Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Apr 15;259(2):471–476. doi: 10.1042/bj2590471

Conformational studies of a synthetic peptide corresponding to the repeat motif of C hordein.

A S Tatham 1, A F Drake 1, P R Shewry 1
PMCID: PMC1138532  PMID: 2719660

Abstract

C hordein, a storage protein from barley grains, has an Mr of about 53,000, and consists predominantly of repeated octapeptides with a consensus sequence of Pro-Gln-Gln-Pro-Phe-Pro-Gln-Gln. Previously reported hydrodynamic and c.d. studies indicate the presence of beta-turns, the repetitive nature of which may lead to the formation of a loose spiral. In order to study these turns we have compared the structures of a synthetic peptide corresponding to the consensus repeat motif and total C hordein by using c.d. and Fourier-transform i.r. spectroscopy. The synthetic peptide exhibited spectra typical of beta I/III reverse turns when dissolved in trifluoroethanol at 22 degrees C and in water at 70 degrees C, but 'random-coil'-like spectra in water at 22 degrees C. The whole protein also showed increases in beta I/III reverse turns when dissolved in increasing concentrations of trifluoroethanol (50-100%, v/v) or heated in ethanol/water (7:3, v/v). Two cryogenic solvent systems were used to determine the c.d. spectra of the peptide and protein at temperatures down to -100 degrees C. Methanol/glycerol (9:1, v/v) and ethanediol/water (2:1, v/v) were selected as analogues of trifluoroethanol/water and water respectively. The peptide exhibited beta I/III-reverse-turn and 'random-coil'-like spectra in methanol/glycerol and ethanediol/water respectively at 22 degrees C, but a spectrum similar to that of a poly-L-proline II helix in both solvents at -100 degrees C. Similarly the proportion of this spectral type also increased when the whole protein was cooled in both solvents. These results indicate that a poly-L-proline II conformation at low temperatures is in equilibrium with a beta I/III-turn-rich conformation at higher temperatures. The latter conformation is also favoured in solvents of low dielectric constant such as trifluoroethanol. The 'random-coil'-like spectra exhibited by the protein and peptide in high-dielectric-constant solvents at room temperature may result from a mixture of the two conformations rather than from the random-coil state.

Full text

PDF
471

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ananthanarayanan V. S., Soman K. V., Ramakrishnan C. A novel supersecondary structure in globular proteins comprising the collagen-like helix and beta-turn. J Mol Biol. 1987 Dec 20;198(4):705–709. doi: 10.1016/0022-2836(87)90211-7. [DOI] [PubMed] [Google Scholar]
  2. Brown F. R., 3rd, Di Corato A., Lorenzi G. P., Blout E. R. Synthesis and structural studies of two collagen analogues: poly (L-prolyl-L-seryl-glycyl) and poly (L-prolyl-L-alanyl-glycyl). J Mol Biol. 1972 Jan 14;63(1):85–99. doi: 10.1016/0022-2836(72)90523-2. [DOI] [PubMed] [Google Scholar]
  3. Bush C. A., Sarkar S. K., Kopple K. D. Circular dichroism of beta turns in peptides and proteins. Biochemistry. 1978 Nov 14;17(23):4951–4954. doi: 10.1021/bi00616a015. [DOI] [PubMed] [Google Scholar]
  4. Chirgadze Y. N., Fedorov O. V., Trushina N. P. Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers. 1975 Apr;14(4):679–694. doi: 10.1002/bip.1975.360140402. [DOI] [PubMed] [Google Scholar]
  5. Chou P. Y., Fasman G. D. Beta-turns in proteins. J Mol Biol. 1977 Sep 15;115(2):135–175. doi: 10.1016/0022-2836(77)90094-8. [DOI] [PubMed] [Google Scholar]
  6. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  7. Drake A. F., Siligardi G., Gibbons W. A. Reassessment of the electronic circular dichroism criteria for random coil conformations of poly(L-lysine) and the implications for protein folding and denaturation studies. Biophys Chem. 1988 Aug;31(1-2):143–146. doi: 10.1016/0301-4622(88)80019-x. [DOI] [PubMed] [Google Scholar]
  8. Entwistle J. Primary structure of a C-hordein gene from barley. Carlsberg Res Commun. 1988;53(4):247–258. doi: 10.1007/BF02907181. [DOI] [PubMed] [Google Scholar]
  9. Forde B. G., Kreis M., Williamson M. S., Fry R. P., Pywell J., Shewry P. R., Bunce N., Miflin B. J. Short tandem repeats shared by B- and C-hordein cDNAs suggest a common evolutionary origin for two groups of cereal storage protein genes. EMBO J. 1985 Jan;4(1):9–15. doi: 10.1002/j.1460-2075.1985.tb02310.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gierasch L. M., Deber C. M., Madison V., Niu C. H., Blout E. R. Conformations of (X-L-Pro-Y)2 cyclic hexapeptides. Preferred beta-turn conformers and implications for beta turns in proteins. Biochemistry. 1981 Aug 4;20(16):4730–4738. doi: 10.1021/bi00519a032. [DOI] [PubMed] [Google Scholar]
  11. Isogai Y., Némethy G., Rackovsky S., Leach S. J., Scheraga H. A. Characterization of multiple bends in proteins. Biopolymers. 1980 Jun;19(6):1183–1210. doi: 10.1002/bip.1980.360190607. [DOI] [PubMed] [Google Scholar]
  12. Jenness D. D., Sprecher C., Johnson W. C., Jr Circular dichroism of collagen, gelatin, and poly(proline) II in the vacuum ultraviolet. Biopolymers. 1976 Mar;15(3):513–521. doi: 10.1002/bip.1976.360150308. [DOI] [PubMed] [Google Scholar]
  13. Lewis P. N., Momany F. A., Scheraga H. A. Chain reversals in proteins. Biochim Biophys Acta. 1973 Apr 20;303(2):211–229. doi: 10.1016/0005-2795(73)90350-4. [DOI] [PubMed] [Google Scholar]
  14. Némethy G., Scheraga H. A. Stereochemical requirements for the existence of hydrogen bonds in beta-bends. Biochem Biophys Res Commun. 1980 Jul 16;95(1):320–327. doi: 10.1016/0006-291x(80)90741-x. [DOI] [PubMed] [Google Scholar]
  15. Paterlini M. G., Freedman T. B., Nafie L. A. Vibrational circular dichroism spectra of three conformationally distinct states and an unordered state of poly(L-lysine) in deuterated aqueous solution. Biopolymers. 1986 Sep;25(9):1751–1765. doi: 10.1002/bip.360250915. [DOI] [PubMed] [Google Scholar]
  16. Shibata S., Asakura J., Isemura T., Isemura S., Saitoh E., Sanada K. Conformational study of the basic proline-rich polypeptides from human parotid saliva. Int J Pept Protein Res. 1984 Feb;23(2):158–165. doi: 10.1111/j.1399-3011.1984.tb02706.x. [DOI] [PubMed] [Google Scholar]
  17. Smith J. A., Pease L. G. Reverse turns in peptides and proteins. CRC Crit Rev Biochem. 1980;8(4):315–399. doi: 10.3109/10409238009105470. [DOI] [PubMed] [Google Scholar]
  18. Susi H., Byler D. M. Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol. 1986;130:290–311. doi: 10.1016/0076-6879(86)30015-6. [DOI] [PubMed] [Google Scholar]
  19. Tatham A. S., Drake A. F., Shewry P. R. A conformational study of a glutamine- and proline-rich cereal seed protein, C hordein. Biochem J. 1985 Mar 1;226(2):557–562. doi: 10.1042/bj2260557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Venkatachalam C. M. Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers. 1968 Oct;6(10):1425–1436. doi: 10.1002/bip.1968.360061006. [DOI] [PubMed] [Google Scholar]
  21. Yang J. T., Wu C. S., Martinez H. M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES