Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Apr 15;259(2):513–518. doi: 10.1042/bj2590513

Differential stimulation of S-adenosylmethionine decarboxylase by difluoromethylornithine in the rat colon and small intestine.

A G Halline 1, P K Dudeja 1, T A Brasitus 1
PMCID: PMC1138538  PMID: 2497738

Abstract

The effects of chronic inhibition of ornithine decarboxylase (ODC) by the specific inhibitor difluoromethylornithine (DFMO) in the rat colon and small intestine on mucosal contents of polyamines, decarboxylated S-adenosylmethionine (decarboxylated AdoMet) and S-adenosylmethionine decarboxylase (AdoMet decarboxylase) activity were studied. Administration of 1% DFMO in the drinking water for 10 or 15 weeks resulted in inhibition of ODC and decreases in intracellular putrescine and spermidine contents in both proximal and distal segments of small intestine and colon. At both time points DFMO administration resulted in a dramatic stimulation of AdoMet decarboxylase activity and a rise in decarboxylated AdoMet content in the proximal and distal small-intestinal segments compared with controls, which was not seen in either colonic segment of DFMO-treated animals. This differential stimulation of AdoMet decarboxylase by DFMO in the small intestine and colon could not be entirely explained on the basis of differences in polyamine contents, which are known to regulate this enzyme activity. Kinetic and inhibition studies of AdoMet decarboxylase in control small and large intestine revealed that: (1) there was no difference in Vmax. values between the tissues; (2) the Km for AdoMet was higher in the small intestine than in the colon; and (3) the Ki for product inhibition by decarboxylated AdoMet was higher in the small intestine than in the colon. These results suggest that the differential stimulation of AdoMet decarboxylase by DFMO in the small intestine and colon may be due to different isoenzymes and could play a significant role in the regulation of polyamine contents throughout the gut.

Full text

PDF
513

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alhonen-Hongisto L. Regulation of S-adenosylmethionine decarboxylase by polyamines in Ehrlich ascites-carcinoma cells grown in culture. Biochem J. 1980 Sep 15;190(3):747–754. doi: 10.1042/bj1900747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ball W. J., Jr, Salser J. S., Balis M. E. Biochemical changes in preneoplastic rodent intestines. Cancer Res. 1976 Jul;36(7 Pt 2):2686–2689. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Heby O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation. 1981;19(1):1–20. doi: 10.1111/j.1432-0436.1981.tb01123.x. [DOI] [PubMed] [Google Scholar]
  5. Herrera-Ornelas L., Porter C., Pera P., Greco W., Petrelli N. J., Mittelman A. A comparison of ornithine decarboxylase and S-adenosylmethionine decarboxylase activity in human large bowel mucosa, polyps, and colorectal adenocarcinoma. J Surg Res. 1987 Jan;42(1):56–60. doi: 10.1016/0022-4804(87)90065-5. [DOI] [PubMed] [Google Scholar]
  6. Hoffman R. M. Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochim Biophys Acta. 1984;738(1-2):49–87. doi: 10.1016/0304-419x(84)90019-2. [DOI] [PubMed] [Google Scholar]
  7. Hosomi M., Smith S. M., Murphy G. M., Dowling R. H. Polyamine distribution in the rat intestinal mucosa. J Chromatogr. 1986 Mar 7;375(2):267–275. doi: 10.1016/s0378-4347(00)83719-6. [DOI] [PubMed] [Google Scholar]
  8. Jänne J., Pösö H., Raina A. Polyamines in rapid growth and cancer. Biochim Biophys Acta. 1978 Apr 6;473(3-4):241–293. doi: 10.1016/0304-419x(78)90015-x. [DOI] [PubMed] [Google Scholar]
  9. Jänne J., Schenone A., Williams-Ashman H. G. Separation of two proteins required for synthesis of spermidine from S-adenosyl-L-methionine and putrescine in rat prostate. Biochem Biophys Res Commun. 1971 Feb 19;42(4):758–764. doi: 10.1016/0006-291x(71)90552-3. [DOI] [PubMed] [Google Scholar]
  10. Kameji T., Pegg A. E. Effect of putrescine on the synthesis of S-adenosylmethionine decarboxylase. Biochem J. 1987 Apr 1;243(1):285–288. doi: 10.1042/bj2430285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kingsnorth A. N., King W. W., Diekema K. A., McCann P. P., Ross J. S., Malt R. A. Inhibition of ornithine decarboxylase with 2-difluoromethylornithine: reduced incidence of dimethylhydrazine-induced colon tumors in mice. Cancer Res. 1983 Jun;43(6):2545–2549. [PubMed] [Google Scholar]
  12. LaMuraglia G. M., Lacaine F., Malt R. A. High ornithine decarboxylase activity and polyamine levels in human colorectal neoplasia. Ann Surg. 1986 Jul;204(1):89–93. doi: 10.1097/00000658-198607000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Luk G. D., Hamilton S. R., Yang P., Smith J. A., O'Ceallaigh D., McAvinchey D., Hyland J. Kinetic changes in mucosal ornithine decarboxylase activity during azoxymethane-induced colonic carcinogenesis in the rat. Cancer Res. 1986 Sep;46(9):4449–4452. [PubMed] [Google Scholar]
  14. Mamont P. S., Danzin C., Wagner J., Siat M., Joder-Ohlenbusch A. M., Claverie N. Accumulation of decarboxylated S-adenosyl-L-methionine in mammalian cells as a consequence of the inhibition of putrescine biosynthesis. Eur J Biochem. 1982 Apr;123(3):499–504. doi: 10.1111/j.1432-1033.1982.tb06559.x. [DOI] [PubMed] [Google Scholar]
  15. Mamont P. S., Duchesne M. C., Grove J., Tardif C. Initial characterization of a HTC cell variant partially resistant to the anti-proliferative effect of ornithine decarboxylase inhibitors. Exp Cell Res. 1978 Sep;115(2):387–393. doi: 10.1016/0014-4827(78)90292-6. [DOI] [PubMed] [Google Scholar]
  16. Oredsson S. M., Kanje M., Mamont P. S., Wagner J., Heby O. Polyamine depletion increases cellular ribonucleotide levels. Mol Cell Biochem. 1986 Apr;70(1):89–96. doi: 10.1007/BF00233806. [DOI] [PubMed] [Google Scholar]
  17. Oredsson S., Anehus S., Heby O. Irreversible inhibition of the early increase in ornithine decarboxylase activity following growth stimulation is required to block Ehrlich ascites tumor cell proliferation in culture. Biochem Biophys Res Commun. 1980 May 14;94(1):151–158. doi: 10.1016/s0006-291x(80)80200-2. [DOI] [PubMed] [Google Scholar]
  18. Pegg A. E., Jones D. B., Secrist J. A., 3rd Effect of inhibitors of S-adenosylmethionine decarboxylase on polyamine content and growth of L1210 cells. Biochemistry. 1988 Mar 8;27(5):1408–1415. doi: 10.1021/bi00405a003. [DOI] [PubMed] [Google Scholar]
  19. Pegg A. E., McCann P. P. Polyamine metabolism and function. Am J Physiol. 1982 Nov;243(5):C212–C221. doi: 10.1152/ajpcell.1982.243.5.C212. [DOI] [PubMed] [Google Scholar]
  20. Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
  21. Pegg A. E., Pösö H., Shuttleworth K., Bennett R. A. Effect of inhibition of polyamine synthesis on the content of decarboxylated S-adenosylmethionine. Biochem J. 1982 Feb 15;202(2):519–526. doi: 10.1042/bj2020519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pegg A. E. The role of polyamine depletion and accumulation of decarboxylated S-adenosylmethionine in the inhibition of growth of SV-3T3 cells treated with alpha-difluoromethylornithine. Biochem J. 1984 Nov 15;224(1):29–38. doi: 10.1042/bj2240029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pegg A. E., Wechter R. S., Clark R. S., Wiest L., Erwin B. G. Acetylation of decarboxylated S-adenosylmethionine by mammalian cells. Biochemistry. 1986 Jan 28;25(2):379–384. doi: 10.1021/bi00350a016. [DOI] [PubMed] [Google Scholar]
  24. Pegg A. E., Wechter R., Pajunen A. Increase in S-adenosylmethionine decarboxylase in SV-3T3 cells treated with S-methyl-5'-methylthioadenosine. Biochem J. 1987 May 15;244(1):49–54. doi: 10.1042/bj2440049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pegg A. E., Williams-Ashman H. G. Biosynthesis of putrescine in the prostate gland of the rat. Biochem J. 1968 Jul;108(4):533–539. doi: 10.1042/bj1080533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Porter C. W., Herrera-Ornelas L., Pera P., Petrelli N. F., Mittelman A. Polyamine biosynthetic activity in normal and neoplastic human colorectal tissues. Cancer. 1987 Sep 15;60(6):1275–1281. doi: 10.1002/1097-0142(19870915)60:6<1275::aid-cncr2820600619>3.0.co;2-i. [DOI] [PubMed] [Google Scholar]
  27. Pösö H., Pegg A. E. Differences between tissues in response of S-adenosylmethionine decarboxylase to administration of polyamines. Biochem J. 1981 Dec 15;200(3):629–637. doi: 10.1042/bj2000629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rozhin J., Wilson P. S., Bull A. W., Nigro N. D. Ornithine decarboxylase activity in the rat and human colon. Cancer Res. 1984 Aug;44(8):3226–3230. [PubMed] [Google Scholar]
  29. Ruiz-Carrillo A., Wangh L. J., Allfrey V. G. Processing of newly synthesized histone molecules. Science. 1975 Oct 10;190(4210):117–128. doi: 10.1126/science.1166303. [DOI] [PubMed] [Google Scholar]
  30. Shirahata A., Pegg A. E. Regulation of S-adenosylmethionine decarboxylase activity in rat liver and prostate. J Biol Chem. 1985 Aug 15;260(17):9583–9588. [PubMed] [Google Scholar]
  31. Steeves R. M., Lawson D. E. Effect of 1,25-dihydroxyvitamin D on S-adenosylmethionine decarboxylase in chick intestine. Biochim Biophys Acta. 1985 Sep 6;841(3):292–298. doi: 10.1016/0304-4165(85)90071-6. [DOI] [PubMed] [Google Scholar]
  32. Tabata K., Johnson L. R. Ornithine decarboxylase and mucosal growth in response to feeding. Am J Physiol. 1986 Aug;251(2 Pt 1):G270–G274. doi: 10.1152/ajpgi.1986.251.2.G270. [DOI] [PubMed] [Google Scholar]
  33. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  34. Takano S., Matsushima M., Ertürk E., Bryan G. T. Early induction of rat colonic epithelial ornithine and S-adenosyl-L-methionine decarboxylase activities by N-methyl-N'-nitro-N-nitrosoguanidine or bile salts. Cancer Res. 1981 Feb;41(2):624–628. [PubMed] [Google Scholar]
  35. Wagner J., Claverie N., Danzin C. A rapid high-performance liquid chromatographic procedure for the simultaneous determination of methionine, ethionine, S-adenosylmethionine, S-adenosylethionine, and the natural polyamines in rat tissues. Anal Biochem. 1984 Jul;140(1):108–116. doi: 10.1016/0003-2697(84)90140-4. [DOI] [PubMed] [Google Scholar]
  36. Yamanoha B., Samejima K. Inhibition of S-adenosylmethionine decarboxylase from rat liver by synthetic decarboxylated S-adenosylmethionine and its analogs. Chem Pharm Bull (Tokyo) 1980 Jul;28(7):2232–2234. doi: 10.1248/cpb.28.2232. [DOI] [PubMed] [Google Scholar]
  37. Zappia V., Zydek-Cwick R., Schlenk F. The specificity of S-adenosylmethionine derivatives in methyl transfer reactions. J Biol Chem. 1969 Aug 25;244(16):4499–4509. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES