Abstract
Choline and C1 metabolism pathways intersect at the formation of methionine from homocysteine. Hepatic S-adenosylmethionine (AdoMet) concentrations are decreased in animals ingesting diets deficient in choline, and it has been suggested that this occurs because the availability of methionine limits AdoMet synthesis. If the above hypothesis is correct, changes in hepatic AdoMet concentrations should relate in some consistent manner to changes in hepatic methionine concentrations. Rats were fed on a choline-deficient or control diet for 1-42 days. Hepatic choline concentrations in control animals were 105 nmol/g, and decreased to 50% of control after the first 7 days on the choline-deficient diet. Hepatic methionine concentrations decreased by less than 20%, with most of this decrease occurring between days 3 and 7 of choline deficiency. Hepatic AdoMet concentrations decreased by 25% during the first week, and continued to decrease (in total, by over 60%) during each subsequent week during which animals consumed a choline-deficient diet. Hepatic S-adenosylhomocysteine (AdoHcy) concentrations increased by 50% when animals consumed a choline-deficient diet. AdoHcy is formed when AdoMet is utilized as a methyl donor. In summary, choline deficiency can deplete hepatic stores of AdoMet under dietary conditions that only minimally decrease the availability of methionine within liver. Thus decreased availability of methionine may not have been the only mechanism whereby choline deficiency lowers hepatic AdoMet concentrations. We suggest that increased utilization of AdoMet might also have occurred.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Barak A. J., Beckenhauer H. C., Tuma D. J. Use of S-adenosylmethionine as an index of methionine recycling in rat liver slices. Anal Biochem. 1982 Dec;127(2):372–375. doi: 10.1016/0003-2697(82)90189-0. [DOI] [PubMed] [Google Scholar]
- Barak A. J., Tuma D. J. A simplified procedure for the determination of betaine in liver. Lipids. 1979 Oct;14(10):860–863. doi: 10.1007/BF02534129. [DOI] [PubMed] [Google Scholar]
- Best C. H., Hershey J. M., Huntsman M. E. The effect of lecithine on fat deposition in the liver of the normal rat. J Physiol. 1932 May 30;75(1):56–66. doi: 10.1113/jphysiol.1932.sp002875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Best C. H., Huntsman M. E. The effects of the components of lecithine upon deposition of fat in the liver. J Physiol. 1932 Aug 10;75(4):405–412. doi: 10.1113/jphysiol.1932.sp002899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bidlingmeyer B. A., Cohen S. A., Tarvin T. L. Rapid analysis of amino acids using pre-column derivatization. J Chromatogr. 1984 Dec 7;336(1):93–104. doi: 10.1016/s0378-4347(00)85133-6. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Bruni C., Hegsted D. M. Effects of choline-deficient diets on the rat hepatocyte. Electron microscopic observations. Am J Pathol. 1970 Dec;61(3):413–436. [PMC free article] [PubMed] [Google Scholar]
- Cabrero C., Puerta J., Alemany S. Purification and comparison of two forms of S-adenosyl-L-methionine synthetase from rat liver. Eur J Biochem. 1987 Dec 30;170(1-2):299–304. doi: 10.1111/j.1432-1033.1987.tb13699.x. [DOI] [PubMed] [Google Scholar]
- Cantoni G. L. Biological methylation: selected aspects. Annu Rev Biochem. 1975;44:435–451. doi: 10.1146/annurev.bi.44.070175.002251. [DOI] [PubMed] [Google Scholar]
- Chen S. H., Estes L. W., Lombardi B. Lecithin depletion in hepatic microsomal membranes of rats fed on a choline-deficient diet. Exp Mol Pathol. 1972 Oct;17(2):176–186. doi: 10.1016/0014-4800(72)90067-6. [DOI] [PubMed] [Google Scholar]
- Degertekin H., Akdamar K., Yates R., Chen I. L., Ertan A., Vaupel R. Light and electron microscopic studies of diet-induced hepatic changes in mice. Acta Anat (Basel) 1986;125(3):174–179. doi: 10.1159/000146157. [DOI] [PubMed] [Google Scholar]
- Finkelstein J. D., Kyle W. E., Harris B. J. Methionine metabolism in mammals: regulatory effects of S-adenosylhomocysteine. Arch Biochem Biophys. 1974 Dec;165(2):774–779. doi: 10.1016/0003-9861(74)90306-3. [DOI] [PubMed] [Google Scholar]
- Finkelstein J. D., Martin J. J., Harris B. J., Kyle W. E. Regulation of the betaine content of rat liver. Arch Biochem Biophys. 1982 Oct 1;218(1):169–173. doi: 10.1016/0003-9861(82)90332-0. [DOI] [PubMed] [Google Scholar]
- Finkelstein J. D., Martin J. J. Methionine metabolism in mammals. Adaptation to methionine excess. J Biol Chem. 1986 Feb 5;261(4):1582–1587. [PubMed] [Google Scholar]
- Freeman J. J., Choi R. L., Jenden D. J. Plasma choline: its turnover and exchange with brain choline. J Neurochem. 1975 Apr;24(4):729–734. [PubMed] [Google Scholar]
- Glenn J. L., Austin W. The conversion of phosphatidyl ethanolamines to lecithins in normal and choline-deficient rats. Biochim Biophys Acta. 1971 Feb 2;231(1):153–160. doi: 10.1016/0005-2760(71)90263-3. [DOI] [PubMed] [Google Scholar]
- Haines D. S. The effects of choline deficiency and choline re-feeding upon the metabolism of plasma and liver lipids. Can J Biochem. 1966 Jan;44(1):45–57. doi: 10.1139/o66-006. [DOI] [PubMed] [Google Scholar]
- Hoffman D. R., Haning J. A., Cornatzer W. E. Effects of a methyl-deficient diet on rat liver phosphatidylcholine biosynthesis. Can J Biochem. 1981 Jul;59(7):543–550. doi: 10.1139/o81-075. [DOI] [PubMed] [Google Scholar]
- IWAMOTO A., HELLWRTEIN E. E., HEGSTED D. M. Composition of dietary fat and the accumulation of liver lipid in the choline-deficient rat. J Nutr. 1963 Apr;79:488–492. doi: 10.1093/jn/79.4.488. [DOI] [PubMed] [Google Scholar]
- Jenden D. J., Roch M., Booth R. A. Simultaneous measurement of endogenous and deuterium-labeled tracer variants of choline and acetylcholine in subpicomole quantities by gas chromatography-mass spectrometry. Anal Biochem. 1973 Oct;55(2):438–448. doi: 10.1016/0003-2697(73)90134-6. [DOI] [PubMed] [Google Scholar]
- Liscovitch M., Freese A., Blusztajn J. K., Wurtman R. J. High-performance liquid chromatography of water-soluble choline metabolites. Anal Biochem. 1985 Nov 15;151(1):182–187. doi: 10.1016/0003-2697(85)90069-7. [DOI] [PubMed] [Google Scholar]
- Lombardi B. Effects of choline deficiency on rat hepatocytes. Fed Proc. 1971 Jan-Feb;30(1):139–142. [PubMed] [Google Scholar]
- Lyman R. L., Sheehan G., Tinoco J. Phosphatidylethanolamine metabolism in rats fed a low methionine, choline-deficient diet. Lipids. 1973 Feb;8(2):71–79. doi: 10.1007/BF02534332. [DOI] [PubMed] [Google Scholar]
- Matsumoto C., Suma Y., Tsukada K. Changes in the activities of S-adenosylmethionine synthetase isozymes from rat liver with dietary methionine. J Biochem. 1984 Jan;95(1):287–290. doi: 10.1093/oxfordjournals.jbchem.a134596. [DOI] [PubMed] [Google Scholar]
- Mudd S. H., Poole J. R. Labile methyl balances for normal humans on various dietary regimens. Metabolism. 1975 Jun;24(6):721–735. doi: 10.1016/0026-0495(75)90040-2. [DOI] [PubMed] [Google Scholar]
- Pascale R., Pirisi L., Daino L., Zanetti S., Satta A., Bartoli E., Feo F. Role of phosphatidylethanolamine methylation in the synthesis of phosphatidylcholine by hepatocytes isolated from choline-deficient rats. FEBS Lett. 1982 Aug 23;145(2):293–297. doi: 10.1016/0014-5793(82)80186-5. [DOI] [PubMed] [Google Scholar]
- Poirier L. A., Grantham P. H., Rogers A. E. The effects of a marginally lipotrope-deficient diet on the hepatic levels of S-adenosylmethionine and on the urinary metabolites of 2-acetylaminofluorene in rats. Cancer Res. 1977 Mar;37(3):744–748. [PubMed] [Google Scholar]
- Ridgway N. D., Vance D. E. Purification of phosphatidylethanolamine N-methyltransferase from rat liver. J Biol Chem. 1987 Dec 15;262(35):17231–17239. [PubMed] [Google Scholar]
- Schneider W. J., Vance D. E. Effect of choline deficiency on the enzymes that synthesize phosphatidylcholine and phosphatidylethanolamine in rat liver. Eur J Biochem. 1978 Apr;85(1):181–187. doi: 10.1111/j.1432-1033.1978.tb12226.x. [DOI] [PubMed] [Google Scholar]
- Shivapurkar N., Poirier L. A. Tissue levels of S-adenosylmethionine and S-adenosylhomocysteine in rats fed methyl-deficient, amino acid-defined diets for one to five weeks. Carcinogenesis. 1983 Aug;4(8):1051–1057. doi: 10.1093/carcin/4.8.1051. [DOI] [PubMed] [Google Scholar]
- Shivapurkar N., Wilson M. J., Hoover K. L., Mikol Y. B., Creasia D., Poirier L. A. Hepatic DNA methylation and liver tumor formation in male C3H mice fed methionine- and choline-deficient diets. J Natl Cancer Inst. 1986 Jul;77(1):213–217. [PubMed] [Google Scholar]
- Skurdal D. N., Cornatzer W. E. Liver microsomal phosphatidyl choline biosynthesis in choline deficiency. Proc Soc Exp Biol Med. 1974 Mar;145(3):992–995. doi: 10.3181/00379727-145-37940. [DOI] [PubMed] [Google Scholar]
- Suma Y., Shimizu K., Tsukada K. Isozymes of S-adenosylmethionine synthetase from rat liver: isolation and characterization. J Biochem. 1986 Jul;100(1):67–75. doi: 10.1093/oxfordjournals.jbchem.a121707. [DOI] [PubMed] [Google Scholar]
- Svardal A. M., Ueland P. M., Berge R. K., Aarsland A., Aarsaether N., Lønning P. E., Refsum H. Effect of methotrexate on homocysteine and other sulfur compounds in tissues of rats fed a normal or a defined, choline-deficient diet. Cancer Chemother Pharmacol. 1988;21(4):313–318. doi: 10.1007/BF00264197. [DOI] [PubMed] [Google Scholar]
- Vance D. E., Schneider W. J. Conversion of phosphatidylethanolamine to phosphatidylcholine. Methods Enzymol. 1981;71(Pt 100):581–588. doi: 10.1016/0076-6879(81)71071-1. [DOI] [PubMed] [Google Scholar]
- Wong E. R., Thompson W. Choline oxidation and labile methyl groups in normal and choline-deficient rat liver. Biochim Biophys Acta. 1972 Feb 21;260(2):259–271. doi: 10.1016/0005-2760(72)90037-9. [DOI] [PubMed] [Google Scholar]
- Zeisel S. H. Dietary choline: biochemistry, physiology, and pharmacology. Annu Rev Nutr. 1981;1:95–121. doi: 10.1146/annurev.nu.01.070181.000523. [DOI] [PubMed] [Google Scholar]