Abstract
Presentation of a protein antigen to T cells is believed to follow its intracellular breakdown by the antigen-presenting cell, with the fragments constituting the trigger of immune recognition. It should then be expected that T-cell recognition of protein antigens in vitro will be independent of protein conformation. Three T-cell lines were made by passage in vitro with native lysozyme of T cells from two mouse strains (B10.BR and DBA/1) that had been primed with the same protein. These cell lines responded well to native lysozyme and very poorly to unfolded (S-sulphopropyl) lysozyme. The response of the T-cell lines to the antigen was major histocompatibility complex (MHC)-restricted. A line from B10.BR was selected for further studies. This line responded to the three surface-simulation synthetic sites of lysozyme (representing the discontinuous antigenic, i.e. antibody binding, sites) and analogues that were extended to a uniform size by a nonsense sequence. T-cell clones prepared from this line were specific to native lysozyme and did not respond to the unfolded derivative. Furthermore, several of these clones showed specificity to a given surface-simulation synthetic site. The exquisite dependency of the recognition by the clones on the conformation of the protein antigen and their ability to recognize the surface-simulation synthetic sites indicate that the native (unprocessed) protein was the trigger of MHC-restricted T-cell recognition.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen P. M., Unanue E. R. Antigen processing and presentation at a molecular level. Adv Exp Med Biol. 1987;225:147–154. doi: 10.1007/978-1-4684-5442-0_11. [DOI] [PubMed] [Google Scholar]
- Atassi M. Z. Antigenic structures of proteins. Their determination has revealed important aspects of immune recognition and generated strategies for synthetic mimicking of protein binding sites. Eur J Biochem. 1984 Nov 15;145(1):1–20. doi: 10.1111/j.1432-1033.1984.tb08516.x. [DOI] [PubMed] [Google Scholar]
- Atassi M. Z., Bixler G. S., Jr T-cell recognition and antigen presentation of myoglobin. Adv Exp Med Biol. 1987;225:65–87. doi: 10.1007/978-1-4684-5442-0_6. [DOI] [PubMed] [Google Scholar]
- Atassi M. Z., Lee C. L., Pai R. C. Enzymic and immunochemical properties of lysozyme. XVI. A novel synthetic approach to an antigenic reactive site by direct linkage of the relevant conformationally adjacent residues constituting the site. Biochim Biophys Acta. 1976 Apr 14;427(2):745–751. doi: 10.1016/0005-2795(76)90219-1. [DOI] [PubMed] [Google Scholar]
- Atassi M. Z. Precise determination of protein antigenic structures has unravelled the molecular immune recognition of proteins and provided a prototype for synthetic mimicking of other protein binding sites. Mol Cell Biochem. 1980 Aug 29;32(1):21–43. doi: 10.1007/BF00421293. [DOI] [PubMed] [Google Scholar]
- Atassi M. Z. Precise determination of the entire antigenic structure of lysozyme: molecular features of protein antigenic structures and potential of "surface-simulation" synthesis--a powerful new concept for protein binding sites. Immunochemistry. 1978 Dec;15(12):909–936. doi: 10.1016/0161-5890(78)90126-8. [DOI] [PubMed] [Google Scholar]
- Atassi M. Z., Yoshioka M., Bean M., Bixler G. S., Jr Non-specific peptide size effects in the recognition by site-specific T-cell clones. Demonstration with a T site of myoglobin. Biochem J. 1987 Sep 1;246(2):307–312. doi: 10.1042/bj2460307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bixler G. S., Jr, Atassi M. Z. T cell recognition of lysozyme. III. Recognition of the 'surface-simulation' synthetic antigenic sites. J Immunogenet. 1984 Jun-Aug;11(3-4):245–250. doi: 10.1111/j.1744-313x.1984.tb01060.x. [DOI] [PubMed] [Google Scholar]
- Bixler G. S., Jr, Bean M., Atassi M. Z. Site recognition by protein-primed T cells shows a non-specific peptide size requirement beyond the essential residues of the site. Demonstration by defining an immunodominant T site in myoglobin. Biochem J. 1986 Nov 15;240(1):139–146. doi: 10.1042/bj2400139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bixler G. S., Jr, Yoshida T., Atassi M. Z. T cell recognition of lysozyme. IV. Localization and genetic control of the continuous T cell recognition sites by synthetic overlapping peptides representing the entire protein chain. J Immunogenet. 1984 Oct-Dec;11(5-6):327–337. doi: 10.1111/j.1744-313x.1984.tb00819.x. [DOI] [PubMed] [Google Scholar]
- Bixler G. S., Yoshida T., Atassi M. Z. Antigen presentation of lysozyme: T-cell recognition of peptide and intact protein after priming with synthetic overlapping peptides comprising the entire protein chain. Immunology. 1985 Sep;56(1):103–112. [PMC free article] [PubMed] [Google Scholar]
- Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature. 1987 Oct 8;329(6139):506–512. doi: 10.1038/329506a0. [DOI] [PubMed] [Google Scholar]
- Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature. 1987 Oct 8;329(6139):512–518. doi: 10.1038/329512a0. [DOI] [PubMed] [Google Scholar]
- Brown J. H., Jardetzky T., Saper M. A., Samraoui B., Bjorkman P. J., Wiley D. C. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature. 1988 Apr 28;332(6167):845–850. doi: 10.1038/332845a0. [DOI] [PubMed] [Google Scholar]
- Chesnut R. W., Grey H. M. Antigen presenting cells and mechanisms of antigen presentation. Crit Rev Immunol. 1985;5(3):263–316. [PubMed] [Google Scholar]
- Cohly H. H., Morrison D. R., Atassi M. Z. Conformation-dependent recognition of a protein by T-lymphocytes: apomyoglobin-specific T-cell clone recognizes conformational changes between apomyoglobin and myoglobin. Immunol Invest. 1988 Jun;17(4):337–342. doi: 10.3109/08820138809041421. [DOI] [PubMed] [Google Scholar]
- Fox B. S., Carbone F. R., Germain R. N., Paterson Y., Schwartz R. H. Processing of a minimal antigenic peptide alters its interaction with MHC molecules. Nature. 1988 Feb 11;331(6156):538–540. doi: 10.1038/331538a0. [DOI] [PubMed] [Google Scholar]
- Kazim A. L., Atassi M. Z. A novel and comprehensive synthetic approach for the elucidation of protein antigenic structures. Determination of the full antigenic profile of the alpha-chain of human haemoglobin. Biochem J. 1980 Oct 1;191(1):261–264. doi: 10.1042/bj1910261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein J. The major histocompatibility complex and protein recognition by T lymphocytes. Adv Exp Med Biol. 1987;225:1–10. doi: 10.1007/978-1-4684-5442-0_1. [DOI] [PubMed] [Google Scholar]
- Lee C. L., Atassi M. Z. Delineation of the third antigenic site of lysozyme by application of a novel 'surface-simulation' synthetic approach directly linking the conformationally adjacent residues forming the site. Biochem J. 1976 Oct 1;159(1):89–93. doi: 10.1042/bj1590089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee P., Matsueda G. R., Allen P. M. T cell recognition of fibrinogen. A determinant on the A alpha-chain does not require processing. J Immunol. 1988 Feb 15;140(4):1063–1068. [PubMed] [Google Scholar]
- Mills K. H., Skehel J. J., Thomas D. B. Conformational-dependent recognition of influenza virus hemagglutinin by murine T helper clones. Eur J Immunol. 1986 Mar;16(3):276–280. doi: 10.1002/eji.1830160312. [DOI] [PubMed] [Google Scholar]
- Naquet P., Ellis J., Singh B., Hodges R. S., Delovitch T. L. Processing and presentation of insulin. I. Analysis of immunogenic peptides and processing requirements for insulin A loop-specific T cells. J Immunol. 1987 Dec 15;139(12):3955–3963. [PubMed] [Google Scholar]
- Sugimoto M., Kojima A., Yaginuma K., Egashira Y. Cell-mediated and humoral immunity in mice: cross reaction between lysozyme and S-carboxymethylated lysozyme studied by a modified footpad test. Jpn J Med Sci Biol. 1975 Feb;28(1):23–35. doi: 10.7883/yoken1952.28.23. [DOI] [PubMed] [Google Scholar]
- Unanue E. R., Allen P. M. The basis for the immunoregulatory role of macrophages and other accessory cells. Science. 1987 May 1;236(4801):551–557. doi: 10.1126/science.2437650. [DOI] [PubMed] [Google Scholar]
- Walden P., Nagy Z. A., Klein J. Antigen presentation by liposomes: inhibition with antibodies. Eur J Immunol. 1986 Jun;16(6):717–720. doi: 10.1002/eji.1830160622. [DOI] [PubMed] [Google Scholar]
- Walden P., Nagy Z. A., Klein J. Induction of regulatory T-lymphocyte responses by liposomes carrying major histocompatibility complex molecules and foreign antigen. Nature. 1985 May 23;315(6017):327–329. doi: 10.1038/315327a0. [DOI] [PubMed] [Google Scholar]
- Walden P., Nagy Z. A., Klein J. Major histocompatibility complex-restricted and unrestricted activation of helper T cell lines by liposome-bound antigens. J Mol Cell Immunol. 1986;2(4):191–197. [PubMed] [Google Scholar]
- Yoshioka M., Atassi M. Z. T-cell recognition and antigen presentation of myoglobin. Protein recognition by site-specific T-cell clones is influenced by amino acid substitutions outside the site. Biochem J. 1989 Mar 15;258(3):645–651. doi: 10.1042/bj2580645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshioka M., Bixler G. S., Jr, Atassi M. Z. Preparation of T-lymphocyte lines and clones with specificities to preselected protein sites by in vitro passage with free synthetic peptides: demonstration with myoglobin sites. Mol Immunol. 1983 Oct;20(10):1133–1137. doi: 10.1016/0161-5890(83)90123-2. [DOI] [PubMed] [Google Scholar]
