Abstract
The partition behaviour of six enzymes of the Calvin cycle in extracts of chloroplasts from spinach (Spinacia oleracea) between two aqueous phases has been studied by countercurrent distribution. The enzymes showed distribution patterns which indicate heterogeneity and the presence of two or three fractions of most of the enzymes. When two of the enzymes, phosphoglycerate kinase and fructose-bisphosphate aldolase, were partitioned in both purified and partially purified form, they behaved like homogeneous substances. These results indicate that countercurrent distribution of crude extracts in aqueous two-phase systems is a useful method to study protein-protein interaction.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALBERTSSON P. A. THIN-LAYER COUNTERCURRENT DISTRIBUTION. Anal Biochem. 1965 Apr;11:121–125. doi: 10.1016/0003-2697(65)90050-3. [DOI] [PubMed] [Google Scholar]
- Albertsson P. A. Interaction between biomolecules studied by phase partition. Methods Biochem Anal. 1983;29:1–24. doi: 10.1002/9780470110492.ch1. [DOI] [PubMed] [Google Scholar]
- Alscher-Herman R. Chloroplast alkaline fructose 1,6-bisphosphatase exists in a membrane-bound form. Plant Physiol. 1982 Sep;70(3):728–734. doi: 10.1104/pp.70.3.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson L. E. Chloroplast and cytoplasmic enzymes. II. Pea leaf triose phosphate isomerases. Biochim Biophys Acta. 1971 Apr 14;235(1):237–244. doi: 10.1016/0005-2744(71)90051-9. [DOI] [PubMed] [Google Scholar]
- Anderson L. E. Microenvironmental manipulation of the observed michaelis constant of ribulose diphosphate carboxylase. Plant Physiol. 1974 Nov;54(5):791–793. doi: 10.1104/pp.54.5.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson L. E., Pacold I. Chloroplast and Cytoplasmic Enzymes: IV. Pea Leaf Fructose 1,6-Diphosphate Aldolases. Plant Physiol. 1972 Mar;49(3):393–397. doi: 10.1104/pp.49.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson L. E. Ribose-5-phosphate isomerase and ribulose-5-phosphate kinase show apparent specificity for a specific ribulose 5-phosphate species. FEBS Lett. 1987 Feb 9;212(1):45–48. doi: 10.1016/0014-5793(87)81553-3. [DOI] [PubMed] [Google Scholar]
- Andrews T. J., Lorimer G. H., Tolbert N. E. Ribulose diphosphate oxygenase. I. Synthesis of phosphoglycolate by fraction-1 protein of leaves. Biochemistry. 1973 Jan 2;12(1):11–18. doi: 10.1021/bi00725a003. [DOI] [PubMed] [Google Scholar]
- Backman L. Binding of human carbonic anhydrase to human hemoglobin. Eur J Biochem. 1981 Nov;120(2):257–261. doi: 10.1111/j.1432-1033.1981.tb05697.x. [DOI] [PubMed] [Google Scholar]
- Blomquist G., Hartman A., Shanbhag V., Johansson G. Separation of isoenzymes by partition in aqueous polymeric two-phase systems. Eur J Biochem. 1974 Oct 1;48(1):63–69. doi: 10.1111/j.1432-1033.1974.tb03743.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brändén R., Nilsson T., Styring S. The formation of L-3-phosphoglyceric acid by ribulose-1,5-bisphosphate carboxylase. Biochem Biophys Res Commun. 1980 Feb 27;92(4):1297–1305. doi: 10.1016/0006-291x(80)90427-1. [DOI] [PubMed] [Google Scholar]
- Gontero B., Cárdenas M. L., Ricard J. A functional five-enzyme complex of chloroplasts involved in the Calvin cycle. Eur J Biochem. 1988 Apr 15;173(2):437–443. doi: 10.1111/j.1432-1033.1988.tb14018.x. [DOI] [PubMed] [Google Scholar]
- Halper L. A., Srere P. A. Interaction between citrate synthase and mitochondrial malate dehydrogenase in the presence of polyethylene glycol. Arch Biochem Biophys. 1977 Dec;184(2):529–534. doi: 10.1016/0003-9861(77)90462-3. [DOI] [PubMed] [Google Scholar]
- Heber U., Santarius K. A. Direct and indirect transfer of ATP and ADP across the chloroplast envelope. Z Naturforsch B. 1970 Jul;25(7):718–728. doi: 10.1515/znb-1970-0714. [DOI] [PubMed] [Google Scholar]
- Henriques F., Park R. B. Identification of chloroplast membrane peptides with subunits of coupling factor and ribulose-1,5 diphosphate carboxylase. Arch Biochem Biophys. 1976 Oct;176(2):472–478. doi: 10.1016/0003-9861(76)90190-9. [DOI] [PubMed] [Google Scholar]
- Howell S. H., Moudrianakis E. N. Function of the "quantasome" in photosynthesis: structure and properties of membrane-bound particle active in the dark reactions of photophosphorylation. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1261–1268. doi: 10.1073/pnas.58.3.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen R. G., Bassham J. A. Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1095–1101. doi: 10.1073/pnas.56.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krüger I., Schnarrenberger C. Purification, subunit structure and immunological comparison of fructose-bisphosphate aldolases from spinach and corn leaves. Eur J Biochem. 1983 Oct 17;136(1):101–106. doi: 10.1111/j.1432-1033.1983.tb07711.x. [DOI] [PubMed] [Google Scholar]
- Latzko E., Zimmermann G., Feller U. Evidence for a hexosediphosphatase from the cytoplasm of spinach leaves. Hoppe Seylers Z Physiol Chem. 1974 Mar;355(3):321–326. doi: 10.1515/bchm2.1974.355.1.321. [DOI] [PubMed] [Google Scholar]
- Lorimer G. H., Badger M. R., Andrews T. J. D-Ribulose-1,5-bisphosphate carboxylase-oxygenase. Improved methods for the activation and assay of catalytic activities. Anal Biochem. 1977 Mar;78(1):66–75. doi: 10.1016/0003-2697(77)90009-4. [DOI] [PubMed] [Google Scholar]
- McNeil P. H., Walker D. A. The effect of magnesium and other ions on the distribution of ribulose 1,5-bisphosphate carboxylase in chloroplast extracts. Arch Biochem Biophys. 1981 Apr 15;208(1):184–188. doi: 10.1016/0003-9861(81)90138-7. [DOI] [PubMed] [Google Scholar]
- Nicholson S., Easterby J. S., Powls R. Properties of a multimeric protein complex from chloroplasts possessing potential activities of NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase. Eur J Biochem. 1987 Jan 15;162(2):423–431. doi: 10.1111/j.1432-1033.1987.tb10619.x. [DOI] [PubMed] [Google Scholar]
- Sainis J. K., Harris G. C. The association of ribulose-1,5-bisphosphate carboxylase with phosphoriboisomerase and phosphoribulokinase. Biochem Biophys Res Commun. 1986 Sep 30;139(3):947–954. doi: 10.1016/s0006-291x(86)80269-8. [DOI] [PubMed] [Google Scholar]
- Sasakawa S., Walter H. Partition behavior of native proteins in aqueous dextran-poly(ethylene glycol)-phase systems. Biochemistry. 1972 Jul 18;11(15):2760–2765. doi: 10.1021/bi00765a004. [DOI] [PubMed] [Google Scholar]
- Scopes R. K. 3-phosphoglycerate kinase of skeletal muscle. Methods Enzymol. 1975;42:127–134. doi: 10.1016/0076-6879(75)42105-x. [DOI] [PubMed] [Google Scholar]
- Shanbhag V., Blomquist G., Johansson G., Hartman A. Three forms of enolase separated by counter-current distribution. FEBS Lett. 1972 Apr 15;22(1):105–108. doi: 10.1016/0014-5793(72)80231-x. [DOI] [PubMed] [Google Scholar]
- Siegenthaler P. A., Depéry F. Influence of unsaturated fatty acids in chloroplasts. Shift of the pH optimum of electron flow and relations to deltapH, thylakoid internal pH and proton uptake. Eur J Biochem. 1976 Jan 15;61(2):573–580. doi: 10.1111/j.1432-1033.1976.tb10052.x. [DOI] [PubMed] [Google Scholar]
- Silverman D. N., Backman L., Tu C. Role of hemoglobin in proton transfer to the active site of carbonic anhydrase. J Biol Chem. 1979 Apr 25;254(8):2588–2591. [PubMed] [Google Scholar]
- Speranza M. L., Zapponi M. C., Iadarola P. Conformation and kinetic properties of photosynthetic glyceraldehyde-3-phosphate dehydrogenase "in vivo". Ital J Biochem. 1982 Jan-Feb;31(1):22–27. [PubMed] [Google Scholar]
- Srere P. A. Complexes of sequential metabolic enzymes. Annu Rev Biochem. 1987;56:89–124. doi: 10.1146/annurev.bi.56.070187.000513. [DOI] [PubMed] [Google Scholar]
- Srivastava D. K., Bernhard S. A. Enzyme-enzyme interactions and the regulation of metabolic reaction pathways. Curr Top Cell Regul. 1986;28:1–68. doi: 10.1016/b978-0-12-152828-7.50003-2. [DOI] [PubMed] [Google Scholar]
- Strotmann H., Hesse H., Edelmann K. Quantitative determination of coupling factor CF1 of chloroplasts. Biochim Biophys Acta. 1973 Aug 31;314(2):202–210. doi: 10.1016/0005-2728(73)90135-7. [DOI] [PubMed] [Google Scholar]
- Welch G. R. On the role of organized multienzyme systems in cellular metabolism: a general synthesis. Prog Biophys Mol Biol. 1977;32(2):103–191. [PubMed] [Google Scholar]
- Westrin H., Backman L. Association of rabbit muscle glycolytic enzymes with filamentous actin. A counter-current distribution study at high ionic strength. Eur J Biochem. 1983 Nov 2;136(2):407–411. doi: 10.1111/j.1432-1033.1983.tb07757.x. [DOI] [PubMed] [Google Scholar]
- Yonuschot G. R., Ortwerth B. J., Koeppe O. J. Purification and properties of a nicotinamide adenine dinucleotide phosphate-requiring glyceraldehyde 3-phosphate dehydrogenase from spinach leaves. J Biol Chem. 1970 Aug 25;245(16):4193–4198. [PubMed] [Google Scholar]
