Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 May 1;259(3):893–896. doi: 10.1042/bj2590893

Determination of the steady-state turnover rates of the metabolically active pools of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in human erythrocytes.

C E King 1, P T Hawkins 1, L R Stephens 1, R H Michell 1
PMCID: PMC1138600  PMID: 2543372

Abstract

When intact human erythrocytes are incubated at metabolic steady state in a chloride-free medium containing [32P]Pi, there is rapid labelling of the gamma-phosphate of ATP, followed by a slower labelling of the monoester phosphate groups of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] [King, Stephens, Hawkins, Guy & Michell (1987) Biochem. J. 244, 209-217]. We have analysed the early kinetics of the labelling of these phosphate groups, in order to determine: (a) the steady-state rates of the interconversions of phosphatidylinositol, PtdIns4P and PtdIns(4,5)P2; and (b) the fractions of the total cellular complement of PtdIns4P and PtdIns(4,5)P2 that participate in this steady-state turnover. The experimental data most closely fit a pattern of PtdIns4P and PtdIns(4,5)P2 turnover in which one-quarter of the total cellular complement of each lipid is in the metabolic pool that participates in rapid metabolic turnover, with rate constants of 0.028 min-1 for the interconversion of PtdIns and PtdIns4P, and of 0.010 min-1 for the PtdIns4P/PtdIns(4,5)P2 cycle. These rate constants represent metabolic fluxes of approx. 2.1 nmol of lipid/h per ml of packed erythrocytes between PtdIns and PtdIns4P and of approx. 5.7 nmol/h per ml of cells between PtdIns4P and PtdIns(4,5)P2.

Full text

PDF
893

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan D. Inositol lipids and membrane function in erythrocytes. Cell Calcium. 1982 Oct;3(4-5):451–465. doi: 10.1016/0143-4160(82)90030-6. [DOI] [PubMed] [Google Scholar]
  2. Dale G. L. Quantitation of adenosine-5'-triphosphate used for phosphoinositide metabolism in human erythrocytes. Blood. 1985 Nov;66(5):1133–1137. [PubMed] [Google Scholar]
  3. King C. E., Stephens L. R., Hawkins P. T., Guy G. R., Michell R. H. Multiple metabolic pools of phosphoinositides and phosphatidate in human erythrocytes incubated in a medium that permits rapid transmembrane exchange of phosphate. Biochem J. 1987 May 15;244(1):209–217. doi: 10.1042/bj2440209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Maretzki D., Klatt D., Reimann B., Rapoport S. ATP utilizing reactions of human erythrocyte membranes and the influence of modulator proteins. Acta Biol Med Ger. 1981;40(4-5):479–486. [PubMed] [Google Scholar]
  5. Momsen G., Vestergaard-Bogind B. Human erythrocyte 2,3-diphosphoglycerate metabolism. Influence of 1,3-diphosphoglycerate and Pi. In vitro studies at low pH with computer simulations. Arch Biochem Biophys. 1978 Sep;190(1):67–84. doi: 10.1016/0003-9861(78)90254-0. [DOI] [PubMed] [Google Scholar]
  6. Müller E., Hegewald H., Jaroszewicz K., Cumme G. A., Hoppe H., Frunder H. Turnover of phosphomonoester groups and compartmentation of polyphosphoinositides in human erythrocytes. Biochem J. 1986 May 1;235(3):775–783. doi: 10.1042/bj2350775. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES