Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 May 15;260(1):183–187. doi: 10.1042/bj2600183

Hypophysectomy does not alter the acinar zonation of gluconeogenesis or the mitochondrial redox state in rat liver.

D Tosh 1, K G Alberti 1, L Agius 1
PMCID: PMC1138643  PMID: 2775181

Abstract

The biochemical and functional heterogeneity of hepatocytes in different zones of the liver acinus may be related to the concentrations of hormones within the liver acinus. We examined the effects of hypophysectomy, which causes marked changes in plasma hormone levels and in activities of hepatic enzymes that are normally heterogeneously distributed, on the degree of metabolic zonation within the liver acinus. In hypophysectomized rats the activity of alanine aminotransferase was increased, but its normal zonation (predominance in the periportal zone) was preserved. The activity in cultured periportal and perivenous hepatocytes was increased by dexamethasone, but not by glucagon. Periportal hepatocytes from hypophysectomized rats expressed higher rates of gluconeogenesis in culture than did perivenous hepatocytes, irrespective of the absence or presence of dexamethasone, glucagon or insulin. Similar differences in rates of ketogenesis and in the mitochondrial redox state in response to glucagon were observed between periportal and perivenous hepatocytes from hypophysectomized rats as between cell populations from normal rats. Although hypophysectomy causes marked changes in hepatic enzyme activities, it does not alter the degree of zonation of alanine aminotransferase, gluconeogenesis or the mitochondrial redox state within the liver acinus.

Full text

PDF
183

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agius L. Metabolic interactions of parenchymal hepatocytes and dividing epithelial cells in co-culture. Biochem J. 1988 May 15;252(1):23–28. doi: 10.1042/bj2520023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BEATON G. H., CURRY D. M., VEEN M. J. Alanine-glutamic transaminase activity and protein metabolism. Arch Biochem Biophys. 1957 Jul;70(1):288–290. doi: 10.1016/0003-9861(57)90104-2. [DOI] [PubMed] [Google Scholar]
  3. BEATON G. H., OZAWA G., BEATON J. R., McHENRY E. W. Effect of anterior pituitary growth hormone on certain liver enzymes. Proc Soc Exp Biol Med. 1953 Aug-Sep;83(4):781–784. doi: 10.3181/00379727-83-20489. [DOI] [PubMed] [Google Scholar]
  4. BEATON G. H., RYU M. H., MCHENRY E. W. Studies on the role of growth hormone in pregnancy. Endocrinology. 1955 Dec;57(6):748–754. doi: 10.1210/endo-57-6-748. [DOI] [PubMed] [Google Scholar]
  5. Csányi V., Greengard O. Effect of hypophysectomy and growth hormone on the inductions of rat liver tyrosine aminotransferase and tryptophan oxygenase by hydrocortisone. Arch Biochem Biophys. 1968 Jun;125(3):824–828. doi: 10.1016/0003-9861(68)90520-1. [DOI] [PubMed] [Google Scholar]
  6. Evans P. J. The regulation of hepatic tyrosine aminotransferase. Biochim Biophys Acta. 1981 Nov 5;677(3-4):433–444. doi: 10.1016/0304-4165(81)90257-9. [DOI] [PubMed] [Google Scholar]
  7. GAVOSTO F., PILERI A., BRUSCA A. Increased transaminase activity in the liver after administration of cortisone. Biochim Biophys Acta. 1957 May;24(2):250–254. doi: 10.1016/0006-3002(57)90190-7. [DOI] [PubMed] [Google Scholar]
  8. GUILLEMIN R., CLAYTON G. W., SMITH J. D., LIPSCOMB H. S. Measurement of free corticosteroids in rat plasma: physiological validation of a method. Endocrinology. 1958 Sep;63(3):349–358. doi: 10.1210/endo-63-3-349. [DOI] [PubMed] [Google Scholar]
  9. Gerondaes P., Alberti K. G., Agius L. Fatty acid metabolism in hepatocytes cultured with hypolipidaemic drugs. Role of carnitine. Biochem J. 1988 Jul 1;253(1):161–167. doi: 10.1042/bj2530161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holt S., Rothwell N. J., Stock M. J., York D. A. Effect of hypophysectomy on energy balance and brown fat activity in obese Zucker rats. Am J Physiol. 1988 Feb;254(2 Pt 1):E162–E166. doi: 10.1152/ajpendo.1988.254.2.E162. [DOI] [PubMed] [Google Scholar]
  11. Horio Y., Fukui H., Taketoshi M., Tanaka T., Wada H. Induction of cytosolic aspartate aminotransferase by glucagon in primary cultured rat hepatocytes. Biochem Biophys Res Commun. 1988 May 31;153(1):410–416. doi: 10.1016/s0006-291x(88)81239-7. [DOI] [PubMed] [Google Scholar]
  12. Jungermann K. Metabolic zonation of liver parenchyma: significance for the regulation of glycogen metabolism, gluconeogenesis, and glycolysis. Diabetes Metab Rev. 1987 Jan;3(1):269–293. doi: 10.1002/dmr.5610030112. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lin R. C., Snodgrass P. J. Primary culture of normal adult rat liver cells which maintain stable urea cycle enzymes. Biochem Biophys Res Commun. 1975 May 19;64(2):725–734. doi: 10.1016/0006-291x(75)90380-0. [DOI] [PubMed] [Google Scholar]
  15. Michalopoulos G., Sattler G. L., Pitot H. C. Hormonal regulation and the effects of glucose on tyrosine aminotransferase activity in adult rat hepatocytes cultured on floating collagen membranes. Cancer Res. 1978 Jun;38(6):1550–1555. [PubMed] [Google Scholar]
  16. Miethke H., Wittig B., Nath A., Jungermann K. Gluconeogenic-glycolytic capacities and metabolic zonation in liver of rats with streptozotocin, non-ketotic as compared to alloxan, ketotic diabetes. Histochemistry. 1986;85(6):483–489. doi: 10.1007/BF00508430. [DOI] [PubMed] [Google Scholar]
  17. Miethke H., Wittig B., Nath A., Zierz S., Jungermann K. Metabolic zonation in liver of diabetic rats. Zonal distribution of phosphoenolpyruvate carboxykinase, pyruvate kinase, glucose-6-phosphatase and succinate dehydrogenase. Biol Chem Hoppe Seyler. 1985 May;366(5):493–501. doi: 10.1515/bchm3.1985.366.1.493. [DOI] [PubMed] [Google Scholar]
  18. NOVIKOFF A. B. Cell heterogeneity within the hepatic lobule of the rat: staining reactions. J Histochem Cytochem. 1959 Jul;7(4):240–244. doi: 10.1177/7.4.240. [DOI] [PubMed] [Google Scholar]
  19. Pösö A. R., Penttilä K. E., Suolinna E. M., Lindros K. O. Urea synthesis in freshly isolated and in cultured periportal and perivenous hepatocytes. Biochem J. 1986 Oct 15;239(2):263–267. doi: 10.1042/bj2390263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Quistorff B., Dich J., Grunnet N. Periportal and perivenous hepatocytes retain their zonal characteristics in primary culture. Biochem Biophys Res Commun. 1986 Sep 30;139(3):1055–1061. doi: 10.1016/s0006-291x(86)80284-4. [DOI] [PubMed] [Google Scholar]
  21. Quistorff B. Gluconeogenesis in periportal and perivenous hepatocytes of rat liver, isolated by a new high-yield digitonin/collagenase perfusion technique. Biochem J. 1985 Jul 1;229(1):221–226. doi: 10.1042/bj2290221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. ROSEN F., ROBERTS N. R., BUDNICK L. E., NICHOL C. A. Corticosteroids and transaminase activity: the specificity of the glutamic-pyruvic transaminase response. Endocrinology. 1959 Aug;65(2):256–264. doi: 10.1210/endo-65-2-256. [DOI] [PubMed] [Google Scholar]
  23. ROSEN F., ROBERTS N. R., NICHOL C. A. Glucocorticosteroids and transaminase activity. I. Increased activity of glutamicpyruvic transaminase in four conditions associated with gluconeogenesis. J Biol Chem. 1959 Mar;234(3):476–480. [PubMed] [Google Scholar]
  24. Shima S., Matsuba M., Pincus G. Effects of hypophysectomy on rat adrenal corticosteroidogenesis in vivo. Endocrinology. 1968 Jan;82(1):21–28. doi: 10.1210/endo-82-1-21. [DOI] [PubMed] [Google Scholar]
  25. Tosh D., Alberti G. M., Agius L. Glucagon regulation of gluconeogenesis and ketogenesis in periportal and perivenous rat hepatocytes. Heterogeneity of hormone action and of the mitochondrial redox state. Biochem J. 1988 Nov 15;256(1):197–204. doi: 10.1042/bj2560197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Traber P. G., Chianale J., Gumucio J. J. Physiologic significance and regulation of hepatocellular heterogeneity. Gastroenterology. 1988 Oct;95(4):1130–1143. doi: 10.1016/0016-5085(88)90194-1. [DOI] [PubMed] [Google Scholar]
  27. Wong B. S., Dunn A. Possible growth hormone regulation of rat liver glutamine synthetase activity. Biochem Biophys Res Commun. 1977 Dec 7;79(3):876–884. doi: 10.1016/0006-291x(77)91192-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES