Abstract
The present studies were undertaken to determine whether mevalonate 5-pyrophosphate decarboxylase (EC 4.1.1.33) is subject to physiological regulation in the intestinal mucosa. Activity was determined in epithelial cells isolated in a villus-to-crypt gradient from chicks fed on different diets in order to vary the sterol flux across the intestinal epithelium. When animals were fed on cholesterol, decarboxylase activity was decreased in all the cell fractions studied, although percentages of inhibition were maximum in crypts of jejunum and ileum. In contrast, decreased sterol flux as a consequence of cholestyramine feeding stimulated decarboxylase activity, especially in villi of the duodenum, where values increased 3-fold with respect to controls. On the other hand, the total cellular sterol content was significantly increased by the cholesterol diet. In duodenum and jejunum, 20-30% of the total cholesterol was in the esterified form under these conditions. However, dietary cholestyramine did not significantly affect amounts of total cellular cholesterol in any of the cell fractions. These results demonstrate that mevalonate 5-pyrophosphate decarboxylase activity changes considerably under different dietary situations and that the existence of secondary sites in the physiological regulation of sterol synthesis in the intestinal mucosa should be considered.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alejandre M. J., Ramirez H., Segovia J. L., Garcia-Peregrin E. Effect of dietary cholesterol and cholestyramine on developmental pattern of 3-hydroxy-3-methylglutaryl-CoA reductase. Ann Nutr Metab. 1985;29(2):111–118. doi: 10.1159/000176968. [DOI] [PubMed] [Google Scholar]
- Alvear M., Jabalquinto A. M., Eyzaguirre J., Cardemil E. Purification and characterization of avian liver mevalonate-5-pyrophosphate decarboxylase. Biochemistry. 1982 Sep 14;21(19):4646–4650. doi: 10.1021/bi00262a020. [DOI] [PubMed] [Google Scholar]
- Dietschy J. M., Siperstein M. D. Cholesterol synthesis by the gastrointestinal tract: localization and mechanisms of control. J Clin Invest. 1965 Aug;44(8):1311–1327. doi: 10.1172/JCI105237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Faust J. R., Goldstein J. L., Brown M. S. Squalene synthetase activity in human fibroblasts: regulation via the low density lipoprotein receptor. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5018–5022. doi: 10.1073/pnas.76.10.5018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fortin-Magana R., Hurwitz R., Herbst J. J., Kretchmer N. Intestinal enzymes: indicators of proliferation and differentiation in the jejunum. Science. 1970 Mar 20;167(3925):1627–1628. doi: 10.1126/science.167.3925.1627. [DOI] [PubMed] [Google Scholar]
- Gonzalez-Pacanowska D., García-Martinez J., García-Peregrín E. Brain phosphorylation and decarboxylation of mevalonic acid in the neonatal chick. Enzyme. 1981;26(3):136–143. doi: 10.1159/000459163. [DOI] [PubMed] [Google Scholar]
- Gonzalez-Pacanowska D., Marco C., Garcia-Martinez J., Garcia-Peregrin E. Role of mevalonate-5-pyrophosphate decarboxylase in the regulation of chick intestinal cholesterogenesis. Biochim Biophys Acta. 1985 Mar 6;833(3):449–455. doi: 10.1016/0005-2760(85)90102-x. [DOI] [PubMed] [Google Scholar]
- Iglesias J., Gonzalez-Pacanowska D., Caamaño G., Garcia-Peregrin E. Mevalonate 5-pyrophosphate decarboxylase in isolated villus and crypt cells of chick intestine. Lipids. 1988 Apr;23(4):291–294. doi: 10.1007/BF02537335. [DOI] [PubMed] [Google Scholar]
- Jabalquinto A. M., Cardemil E. The effect of diabetes, nutritional factors, and sex on rat liver and kidney mevalonate kinase, mevalonate-5-phosphate kinase, and mevalonate-5-pyrophosphate decarboxylase. Arch Biochem Biophys. 1981 Aug;210(1):132–139. doi: 10.1016/0003-9861(81)90173-9. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Merchant J. L., Heller R. A. 3-Hydroxy-3-methylglutaryl coenzyme A reductase in isolated villous and crypt cells of the rat ileum. J Lipid Res. 1977 Nov;18(6):722–733. [PubMed] [Google Scholar]
- Mitchell E. D., Jr, Avigan J. Control of phosphorylation and decarboxylation of mevalonic acid and its metabolites in cultured human fibroblasts and in rat liver in vivo. J Biol Chem. 1981 Jun 25;256(12):6170–6173. [PubMed] [Google Scholar]
- Ramachandran C. K., Shah S. N. Decarboxylation of mevalonate pyrophosphate is one rate-limiting step in hepatic cholesterol synthesis in suckling and weaned rats. Biochem Biophys Res Commun. 1976 Mar 8;69(1):42–47. doi: 10.1016/s0006-291x(76)80269-0. [DOI] [PubMed] [Google Scholar]
- Ramirez H., Alejandre M. J., Garcia-Peregrin E. Development of the diurnal rhythm of chick 3-hydroxy-3-methylglutaryl-CoA reductase. Lipids. 1982 Jun;17(6):434–436. doi: 10.1007/BF02535222. [DOI] [PubMed] [Google Scholar]
- Raul F., Simon P., Kedinger M., Haffen K. Intestinal enzymes activities in isolated villus and crypt cells during postnatal development of the rat. Cell Tissue Res. 1977 Jan 12;176(2):167–178. doi: 10.1007/BF00229460. [DOI] [PubMed] [Google Scholar]
- Rilling H. C. Eukaryotic prenyltransferases. Methods Enzymol. 1985;110:145–152. doi: 10.1016/s0076-6879(85)10069-8. [DOI] [PubMed] [Google Scholar]
- Satterwhite D. M. Isopentenyldiphosphate delta-isomerase. Methods Enzymol. 1985;110:92–99. doi: 10.1016/s0076-6879(85)10064-9. [DOI] [PubMed] [Google Scholar]
- Shefer S., Hauser S., Lapar V., Mosbach E. H. Regulatory effects of dietary sterols and bile acids on rat intestinal HMG CoA reductase. J Lipid Res. 1973 Jul;14(4):400–405. [PubMed] [Google Scholar]
- Sklan D., Budowski P., Ascarelli I., Hurwitz S. Lipid absorption and secretion in the chick: effect of raw soybean meal. J Nutr. 1973 Sep;103(9):1299–1305. doi: 10.1093/jn/103.9.1299. [DOI] [PubMed] [Google Scholar]
- Slakey L. L., Craig M. C., Beytia E., Briedis A., Feldbruegge D. H., Dugan R. E., Qureshi A. A., Subbarayan C., Porter J. W. The effects of fasting, refeeding, and time of day on the levels of enzymes effecting the conversion of -hydroxy- -methylglutaryl-coenzyme A to squalene. J Biol Chem. 1972 May 25;247(10):3014–3022. [PubMed] [Google Scholar]
- Stange E. F., Dietschy J. M. Absolute rates of cholesterol synthesis in rat intestine in vitro and in vivo: a comparison of different substrates in slices and isolated cells. J Lipid Res. 1983 Jan;24(1):72–82. [PubMed] [Google Scholar]
- Stange E. F., Suckling K. E., Dietschy J. M. Synthesis and coenzyme A-dependent esterification of cholesterol in rat intestinal epithelium. Differences in cellular localization and mechanisms of regulation. J Biol Chem. 1983 Nov 10;258(21):12868–12875. [PubMed] [Google Scholar]
- Turley S. D., Andersen J. M., Dietschy J. M. Rates of sterol synthesis and uptake in the major organs of the rat in vivo. J Lipid Res. 1981 May;22(4):551–569. [PubMed] [Google Scholar]
- Weiser M. M. Intestinal epithelial cell surface membrane glycoprotein synthesis. I. An indicator of cellular differentiation. J Biol Chem. 1973 Apr 10;248(7):2536–2541. [PubMed] [Google Scholar]
