Abstract
A small dermatan sulphate proteoglycan (DSPG) was extracted from rat cervices and was purified by using DEAE-Sephacel ion-exchange chromatography, gel filtration on Sepharose CL-2B and CsCl-density-gradient centrifugation. Sedimentation-equilibrium centrifugation gave a weight-average Mr of 95,000. Amino acid analysis showed a high content of aspartic acid, glutamic acid, glycine and leucine. The glycosaminoglycan chains had Mr 50,000 as determined by gel filtration. Chondroitin AC lyase and chondroitin ABC lyase digestions of these chains showed that they were composed of 75% dermatan sulphate and 25% chondroitin sulphate. Chondroitin ABC lyase digestion produced a core protein of Mr 45,000. The core protein, after treatment with HF, had Mr 37,000. Amino acid sequences of the N-terminus and a CNBr-cleavage peptide showed similarity to the sequences of core proteins of small proteoglycans of bovine and human origin, but the N-terminal glycosaminoglycan-attachment site (Ser-Gly-Ile-Ile) differed from the consensus sequence (Ser-Gly-Xaa-Gly) [Bourdon, Krusius, Campbell, Schwartz & Ruoslahti (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 3194-3198]. A polyclonal antibody against the rat cervical DSPG reacted with small proteoglycans from cervices of human, mouse, dog, cow and sheep. DSPG is the major proteoglycan species present in the cervix. The amount of DSPG per cervix increases 4-fold during pregnancy, then falls precipitously within 1 day post partum. A role in cervical dilatation is postulated for this proteoglycan.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aspden R. M. Collagen organisation in the cervix and its relation to mechanical function. Coll Relat Res. 1988 Mar;8(2):103–112. doi: 10.1016/s0174-173x(88)80022-0. [DOI] [PubMed] [Google Scholar]
- BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
- Bourdon M. A., Krusius T., Campbell S., Schwartz N. B., Ruoslahti E. Identification and synthesis of a recognition signal for the attachment of glycosaminoglycans to proteins. Proc Natl Acad Sci U S A. 1987 May;84(10):3194–3198. doi: 10.1073/pnas.84.10.3194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brennan M. J., Oldberg A., Pierschbacher M. D., Ruoslahti E. Chondroitin/dermatan sulfate proteoglycan in human fetal membranes. Demonstration of an antigenically similar proteoglycan in fibroblasts. J Biol Chem. 1984 Nov 25;259(22):13742–13750. [PubMed] [Google Scholar]
- Brew K., Hill R. L. The isolation and characterization of the tryptic, chymotryptic, peptic, and cyanogen bromide peptides from bovine alpha-lactalbumin. J Biol Chem. 1970 Sep 10;245(17):4559–4569. [PubMed] [Google Scholar]
- Callahan P. X., Shepard J. A., Reilly T. J., McDonald J. K., Ellis S. Separation and identification of dipeptides by paper and column chromatography. Anal Biochem. 1970 Dec;38(2):330–356. doi: 10.1016/0003-2697(70)90457-4. [DOI] [PubMed] [Google Scholar]
- Carlson D. M. Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem. 1968 Feb 10;243(3):616–626. [PubMed] [Google Scholar]
- Chopra R. K., Pearson C. H., Pringle G. A., Fackre D. S., Scott P. G. Dermatan sulphate is located on serine-4 of bovine skin proteodermatan sulphate. Demonstration that most molecules possess only one glycosaminoglycan chain and comparison of amino acid sequences around glycosylation sites in different proteoglycans. Biochem J. 1985 Nov 15;232(1):277–279. doi: 10.1042/bj2320277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cöster L., Fransson L. A. Isolation and characterization of dermatan sulphate proteoglycans from bovine sclera. Biochem J. 1981 Jan 1;193(1):143–153. doi: 10.1042/bj1930143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DANFORTH D. N., BUCKINGHAM J. C., RODDICK J. W., Jr Connective tissue changes incident to cervical effacement. Am J Obstet Gynecol. 1960 Nov;80:939–945. doi: 10.1016/0002-9378(60)90472-5. [DOI] [PubMed] [Google Scholar]
- DANFORTH D. N. The distribution and functional activity of the cervical musculature. Am J Obstet Gynecol. 1954 Nov;68(5):1261–1271. [PubMed] [Google Scholar]
- Day A. A., McQuillan C. I., Termine J. D., Young M. R. Molecular cloning and sequence analysis of the cDNA for small proteoglycan II of bovine bone. Biochem J. 1987 Dec 15;248(3):801–805. doi: 10.1042/bj2480801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellwood D. A. The hormonal control of connective-tissue changes in the uterine cervix in pregnancy and at parturition. Biochem Soc Trans. 1980 Oct;8(5):662–667. doi: 10.1042/bst0080662. [DOI] [PubMed] [Google Scholar]
- Farndale R. W., Buttle D. J., Barrett A. J. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986 Sep 4;883(2):173–177. doi: 10.1016/0304-4165(86)90306-5. [DOI] [PubMed] [Google Scholar]
- Fosang A. J., Handley C. J., Santer V., Lowther D. A., Thorburn G. D. Pregnancy-related changes in the connective tissue of the ovine cervix. Biol Reprod. 1984 Jun;30(5):1223–1235. doi: 10.1095/biolreprod30.5.1223. [DOI] [PubMed] [Google Scholar]
- Fujii N., Nagai Y. Isolation and characterization of a proteodermatan sulfate from calf skin. J Biochem. 1981 Nov;90(5):1249–1258. doi: 10.1093/oxfordjournals.jbchem.a133589. [DOI] [PubMed] [Google Scholar]
- Gershoni J. M., Palade G. E. Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to a positively charged membrane filter. Anal Biochem. 1982 Aug;124(2):396–405. doi: 10.1016/0003-2697(82)90056-2. [DOI] [PubMed] [Google Scholar]
- HARKNESS M. L., HARKNESS R. D. Changes in the physical properties of the uterine cervix of the rat during pregnancy. J Physiol. 1959 Oct;148:524–547. doi: 10.1113/jphysiol.1959.sp006304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hassell J. R., Kimura J. H., Hascall V. C. Proteoglycan core protein families. Annu Rev Biochem. 1986;55:539–567. doi: 10.1146/annurev.bi.55.070186.002543. [DOI] [PubMed] [Google Scholar]
- Heinegård D., Björne-Persson A., Cöster L., Franzén A., Gardell S., Malmström A., Paulsson M., Sandfalk R., Vogel K. The core proteins of large and small interstitial proteoglycans from various connective tissues form distinct subgroups. Biochem J. 1985 Aug 15;230(1):181–194. doi: 10.1042/bj2300181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinegård D., Paulsson M., Inerot S., Carlström C. A novel low-molecular weight chondroitin sulphate proteoglycan isolated from cartilage. Biochem J. 1981 Aug 1;197(2):355–366. doi: 10.1042/bj1970355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleissl H. P., van der Rest M., Naftolin F., Glorieux F. H., de Leon A. Collagen changes in the human uterine cervix at parturition. Am J Obstet Gynecol. 1978 Apr 1;130(7):748–753. doi: 10.1016/0002-9378(78)90003-0. [DOI] [PubMed] [Google Scholar]
- Krusius T., Ruoslahti E. Primary structure of an extracellular matrix proteoglycan core protein deduced from cloned cDNA. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7683–7687. doi: 10.1073/pnas.83.20.7683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEPPI T. J. A STUDY OF THE UTERINE CERVIX OF THE MOUSE. Anat Rec. 1964 Sep;150:51–65. doi: 10.1002/ar.1091500106. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
- McCormick D., van der Rest M., Goodship J., Lozano G., Ninomiya Y., Olsen B. R. Structure of the glycosaminoglycan domain in the type IX collagen-proteoglycan. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4044–4048. doi: 10.1073/pnas.84.12.4044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
- Mort A. J., Lamport D. T. Anhydrous hydrogen fluoride deglycosylates glycoproteins. Anal Biochem. 1977 Oct;82(2):289–309. doi: 10.1016/0003-2697(77)90165-8. [DOI] [PubMed] [Google Scholar]
- Nagase H., Woessner J. F., Jr An improved assay for proteases and polysaccharidases employing a cartilage proteoglycan substrate entrapped in polyacrylamide particles. Anal Biochem. 1980 Sep 15;107(2):385–392. doi: 10.1016/0003-2697(80)90400-5. [DOI] [PubMed] [Google Scholar]
- Pearson C. H., Winterbottom N., Fackre D. S., Scott P. G., Carpenter M. R. The NH2-terminal amino acid sequence of bovine skin proteodermatan sulfate. J Biol Chem. 1983 Dec 25;258(24):15101–15104. [PubMed] [Google Scholar]
- Rajabi M., Dean D. D., Woessner J. F., Jr High levels of serum collagenase in premature labor--a potential biochemical marker. Obstet Gynecol. 1987 Feb;69(2):179–186. [PubMed] [Google Scholar]
- Rodén L., Koerner T., Olson C., Schwartz N. B. Mechanisms of chain initiation in the biosynthesis of connective tissue polysaccharides. Fed Proc. 1985 Feb;44(2):373–380. [PubMed] [Google Scholar]
- Ryhänen L., Rantala-Ryhänen S., Tan E. M., Uitto J. Assay of collagenase activity by a rapid, sensitive, and specific method. Coll Relat Res. 1982 Mar;2(2):117–130. doi: 10.1016/s0174-173x(82)80028-9. [DOI] [PubMed] [Google Scholar]
- Uldbjerg N., Malmström A., Ekman G., Sheehan J., Ulmsten U., Wingerup L. Isolation and characterization of dermatan sulphate proteoglycan from human uterine cervix. Biochem J. 1983 Feb 1;209(2):497–503. doi: 10.1042/bj2090497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogel K. G., Paulsson M., Heinegård D. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J. 1984 Nov 1;223(3):587–597. doi: 10.1042/bj2230587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wasteson A. A method for the determination of the molecular weight and molecular-weight distribution of chondroitin sulphate. J Chromatogr. 1971 Jul 8;59(1):87–97. doi: 10.1016/s0021-9673(01)80009-1. [DOI] [PubMed] [Google Scholar]
- Whitney P. L., Powell J. T., Sanford G. L. Oxidation and chemical modification of lung beta-galactoside-specific lectin. Biochem J. 1986 Sep 15;238(3):683–689. doi: 10.1042/bj2380683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams L. M., Hollingsworth M., Dixon J. S. Changes in the tensile properties and fine structure of the rat cervix in late pregnancy and during parturition. J Reprod Fertil. 1982 Sep;66(1):203–211. doi: 10.1530/jrf.0.0660203. [DOI] [PubMed] [Google Scholar]
- YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]
- Yanagishita M., Hascall V. C. Characterization of low buoyant density dermatan sulfate proteoglycans synthesized by rat ovarian granulosa cells in culture. J Biol Chem. 1983 Nov 10;258(21):12847–12856. [PubMed] [Google Scholar]


