Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Jun 1;260(2):421–426. doi: 10.1042/bj2600421

The distribution of heavy-chain isoforms of myosin in airways smooth muscle from adult and neonate humans.

M A Mohammad 1, M P Sparrow 1
PMCID: PMC1138685  PMID: 2764880

Abstract

Changes in the expression of heavy chains of myosin during development determine the functional characteristics of striated muscles. The distribution of heavy-chain isoforms of smooth-muscle myosin was determined in the airways of adult and infant humans to see whether it might underlie the hyperreactivity of human airways. The protein bands corresponding to myosin were separated using SDS/polyacrylamide-gel electrophoresis (4% gels) and identified by immunoblotting using both monoclonal and polyclonal antibodies against smooth-muscle myosin and non-muscle myosin. The relative proportion of each heavy chain stained by Coomassie Blue was measured by densitometric scanning. Three major bands corresponding to myosin heavy-chain isoforms were found; the two slower migrating bands (MHC1 and MHC2) were smooth-muscle myosin, and the third band was non-muscle myosin. The MHC1/MHC2 ratio was 0.69:1 in adult bronchus, and in infant bronchus and trachea. This contrasted with the airway smooth muscle in pigs, which was run concurrently, where the smooth-muscle heavy-chain ratio changed with development [Mohammad & Sparrow (1988) FEBS Lett. 228, 109-112]. The non-muscle myosin heavy chain comprised 63% of the smooth-muscle myosin. In both adult and infant lungs an additional putative myosin heavy chain which migrated slightly more rapidly than non-muscle myosin heavy chain was identified using the monoclonal smooth-muscle myosin antibody BF 48. This was unique to the human species.

Full text

PDF
421

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckers-Bleukx G., Maréchal G. Detection and distribution of myosin isozymes in vertebrate smooth muscle. Eur J Biochem. 1985 Oct 1;152(1):207–211. doi: 10.1111/j.1432-1033.1985.tb09185.x. [DOI] [PubMed] [Google Scholar]
  2. Dechesne C. A., Bouvagnet P., Walzthöny D., Léger J. J. Visualization of cardiac ventricular myosin heavy chain homodimers and heterodimers by monoclonal antibody epitope mapping. J Cell Biol. 1987 Dec;105(6 Pt 2):3031–3037. doi: 10.1083/jcb.105.6.3031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Everett A. W., Sparrow M. P. Transient appearance of a fast myosin heavy chain epitope in slow-type muscle fibres during stretch hypertrophy of the anterior latissimus dorsi muscle in the adult chicken. J Muscle Res Cell Motil. 1987 Jun;8(3):220–228. doi: 10.1007/BF01574590. [DOI] [PubMed] [Google Scholar]
  4. Gröschel-Stewart U., Rakousky C., Franke R., Peleg I., Kahane I., Eldor A., Muhlrad A. Immunohistochemical studies with antibodies to myosins from the cytoplasm and membrane fraction of human blood platelets. Cell Tissue Res. 1985;241(2):399–404. doi: 10.1007/BF00217186. [DOI] [PubMed] [Google Scholar]
  5. Hopp R. J., Bewtra A., Nair N. M., Townley R. G. The effect of age on methacholine response. J Allergy Clin Immunol. 1985 Oct;76(4):609–613. doi: 10.1016/0091-6749(85)90783-3. [DOI] [PubMed] [Google Scholar]
  6. Kawamoto S., Adelstein R. S. Characterization of myosin heavy chains in cultured aorta smooth muscle cells. A comparative study. J Biol Chem. 1987 May 25;262(15):7282–7288. [PubMed] [Google Scholar]
  7. Larson D. M., Fujiwara K., Alexander R. W., Gimbrone M. A., Jr Heterogeneity of myosin antigenic expression in vascular smooth muscle in vivo. Lab Invest. 1984 Apr;50(4):401–407. [PubMed] [Google Scholar]
  8. Lema M. J., Pagani E. D., Shemin R., Julian F. J. Myosin isozymes in rabbit and human smooth muscles. Circ Res. 1986 Aug;59(2):115–123. doi: 10.1161/01.res.59.2.115. [DOI] [PubMed] [Google Scholar]
  9. Mohammad M. A., Sparrow M. P. Changes in myosin heavy chain stoichiometry in pig tracheal smooth muscle during development. FEBS Lett. 1988 Feb 8;228(1):109–112. doi: 10.1016/0014-5793(88)80596-9. [DOI] [PubMed] [Google Scholar]
  10. Nagai R., Larson D. M., Periasamy M. Characterization of a mammalian smooth muscle myosin heavy chain cDNA clone and its expression in various smooth muscle types. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1047–1051. doi: 10.1073/pnas.85.4.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pette D., Vrbová G. Neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve. 1985 Oct;8(8):676–689. doi: 10.1002/mus.880080810. [DOI] [PubMed] [Google Scholar]
  12. Prendiville A., Green S., Silverman M. Bronchial responsiveness to histamine in wheezy infants. Thorax. 1987 Feb;42(2):92–99. doi: 10.1136/thx.42.2.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reiser P. J., Kasper C. E., Greaser M. L., Moss R. L. Functional significance of myosin transitions in single fibers of developing soleus muscle. Am J Physiol. 1988 May;254(5 Pt 1):C605–C613. doi: 10.1152/ajpcell.1988.254.5.C605. [DOI] [PubMed] [Google Scholar]
  14. Rovner A. S., Murphy R. A., Owens G. K. Expression of smooth muscle and nonmuscle myosin heavy chains in cultured vascular smooth muscle cells. J Biol Chem. 1986 Nov 5;261(31):14740–14745. [PubMed] [Google Scholar]
  15. Rovner A. S., Thompson M. M., Murphy R. A. Two different heavy chains are found in smooth muscle myosin. Am J Physiol. 1986 Jun;250(6 Pt 1):C861–C870. doi: 10.1152/ajpcell.1986.250.6.C861. [DOI] [PubMed] [Google Scholar]
  16. Sartore S., De Marzo N., Borrione A. C., Zanellato A. M., Saggin L., Fabbri L., Schiaffino S. Myosin heavy-chain isoforms in human smooth muscle. Eur J Biochem. 1989 Jan 15;179(1):79–85. doi: 10.1111/j.1432-1033.1989.tb14523.x. [DOI] [PubMed] [Google Scholar]
  17. Sparrow M. P., Arner A., Mohammad M. A., Hellstrand P., Rüegg J. C. Isoforms of myosin in smooth muscle. Prog Clin Biol Res. 1987;245:67–79. [PubMed] [Google Scholar]
  18. Sparrow M. P., Mohammad M. A., Arner A., Hellstrand P., Rüegg J. C. Myosin composition and functional properties of smooth muscle from the uterus of pregnant and non-pregnant rats. Pflugers Arch. 1988 Oct;412(6):624–633. doi: 10.1007/BF00583764. [DOI] [PubMed] [Google Scholar]
  19. Sweeney H. L., Kushmerick M. J., Mabuchi K., Gergely J., Sréter F. A. Velocity of shortening and myosin isozymes in two types of rabbit fast-twitch muscle fibers. Am J Physiol. 1986 Sep;251(3 Pt 1):C431–C434. doi: 10.1152/ajpcell.1986.251.3.C431. [DOI] [PubMed] [Google Scholar]
  20. Takano-Ohmuro H., Obinata T., Mikawa T., Masaki T. Changes in myosin isozymes during development of chicken gizzard muscle. J Biochem. 1983 Mar;93(3):903–908. doi: 10.1093/jb/93.3.903. [DOI] [PubMed] [Google Scholar]
  21. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Whalen R. G., Sell S. M., Butler-Browne G. S., Schwartz K., Bouveret P., Pinset-Härstöm I. Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature. 1981 Aug 27;292(5826):805–809. doi: 10.1038/292805a0. [DOI] [PubMed] [Google Scholar]
  23. Yanagisawa M., Hamada Y., Katsuragawa Y., Imamura M., Mikawa T., Masaki T. Complete primary structure of vertebrate smooth muscle myosin heavy chain deduced from its complementary DNA sequence. Implications on topography and function of myosin. J Mol Biol. 1987 Nov 20;198(2):143–157. doi: 10.1016/0022-2836(87)90302-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES