Abstract
A novel assay for cytochrome P-450-dependent 14 alpha-sterol demethylase of the important opportunistic fungal pathogen, Candida albicans, is described. The enzyme was assayed in microsomal preparations (microsomes) by measuring the incorporation of [14C]lanosterol into (4,14)-desmethylated sterols. The efficacy of different cell-breakage methods was compared; desmethylated-sterol biosynthesis was maximal when cells were broken with a Braun disintegrator. The solubilization of [14C]lanosterol with detergent in the assay system was essential for enzyme activity, which was enhanced considerably when microsomes were gassed with O2. Under these conditions, there was a reciprocal relationship between the amount of radioactivity incorporated into desmethylated sterols and that lost from lanosterol. The major radiolabelled desmethylated sterol was ergosterol. The enzyme had an apparent Km of 52.73 +/- 2.80 microM and an apparent Vmax of 0.84 +/- 0.14 nmol/min per mg of protein (n = 3). Enzyme activity was decreased greatly when microsomes were treated with CO or the triazole antifungal ICI 153066.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander K. T., Mitropoulos K. A., Gibbons G. F. A possible role for cytochrome P-450 during the biosynthesis of zymosterol from lanosterol by Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1974 Sep 9;60(1):460–467. doi: 10.1016/0006-291x(74)90226-5. [DOI] [PubMed] [Google Scholar]
- Aoyama Y., Yoshida Y., Sato R. Yeast cytochrome P-450 catalyzing lanosterol 14 alpha-demethylation. II. Lanosterol metabolism by purified P-450(14)DM and by intact microsomes. J Biol Chem. 1984 Feb 10;259(3):1661–1666. [PubMed] [Google Scholar]
- Aoyama Y., Yoshida Y., Sonoda Y., Sato Y. Metabolism of 32-hydroxy-24,25-dihydrolanosterol by purified cytochrome P-45014DM from yeast. Evidence for contribution of the cytochrome to whole process of lanosterol 14 alpha-demethylation. J Biol Chem. 1987 Jan 25;262(3):1239–1243. [PubMed] [Google Scholar]
- Barrett-Bee K. J., Lane A. C., Turner R. W. The mode of antifungal action of tolnaftate. J Med Vet Mycol. 1986 Apr;24(2):155–160. doi: 10.1080/02681218680000221. [DOI] [PubMed] [Google Scholar]
- Brasseur R., Vandenbosch C., Van den Bossche H., Ruysschaert J. M. Mode of insertion of miconazole, ketoconazole and deacylated ketoconazole in lipid layers. A conformational analysis. Biochem Pharmacol. 1983 Jul 15;32(14):2175–2180. doi: 10.1016/0006-2952(83)90223-x. [DOI] [PubMed] [Google Scholar]
- Cope J. E. Mode of action of miconazole on Candida albicans: effect on growth, viability and K+ release. J Gen Microbiol. 1980 Jul;119(1):245–251. doi: 10.1099/00221287-119-1-245. [DOI] [PubMed] [Google Scholar]
- Fromtling R. A. Overview of medically important antifungal azole derivatives. Clin Microbiol Rev. 1988 Apr;1(2):187–217. doi: 10.1128/cmr.1.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons F. G., Pullinger C. R., Mitropoulos K. A. Studies on the mechanism of lanosterol 14 alpha-demethylation. A requirement for two distinct types of mixed-function-oxidase systems. Biochem J. 1979 Nov 1;183(2):309–315. doi: 10.1042/bj1830309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons G. F., Mitropoulos K. A., Pullinger C. R. Lanosterol 14alpha-demethylase. The metabolism of some potential intermediates by cell-free systems from rat liver. Biochem Biophys Res Commun. 1976 Apr 5;69(3):781–789. doi: 10.1016/0006-291x(76)90943-8. [DOI] [PubMed] [Google Scholar]
- Hitchcock C. A., Barrett-Bee K. J., Russell N. J. Inhibition of 14 alpha-sterol demethylase activity in Candida albicans Darlington does not correlate with resistance to azole. J Med Vet Mycol. 1987 Oct;25(5):329–333. [PubMed] [Google Scholar]
- Hitchcock C. A., Barrett-Bee K. J., Russell N. J. The lipid composition of azole-sensitive and azole-resistant strains of Candida albicans. J Gen Microbiol. 1986 Sep;132(9):2421–2431. doi: 10.1099/00221287-132-9-2421. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Marriott M. S. Inhibition of sterol biosynthesis in Candida albicans by imidazole-containing antifungals. J Gen Microbiol. 1980 Mar;117(1):253–255. doi: 10.1099/00221287-117-1-253. [DOI] [PubMed] [Google Scholar]
- Mason J. I., Murry B. A., Olcott M., Sheets J. J. Imidazole antimycotics: inhibitors of steroid aromatase. Biochem Pharmacol. 1985 Apr 1;34(7):1087–1092. doi: 10.1016/0006-2952(85)90613-6. [DOI] [PubMed] [Google Scholar]
- Portillo F., Gancedo C. Mode of action of miconazole on yeasts: inhibition of the mitochondrial ATPase. Eur J Biochem. 1984 Sep 3;143(2):273–276. doi: 10.1111/j.1432-1033.1984.tb08369.x. [DOI] [PubMed] [Google Scholar]
- Rahier A., Taton M. The 14 alpha-demethylation of obtusifoliol by a cytochrome P-450 monooxygenase from higher plants' microsomes. Biochem Biophys Res Commun. 1986 Nov 14;140(3):1064–1072. doi: 10.1016/0006-291x(86)90743-6. [DOI] [PubMed] [Google Scholar]
- Trzaskos J. M., Bowen W. D., Shafiee A., Fischer R. T., Gaylor J. L. Cytochrome P-450-dependent oxidation of lanosterol in cholesterol biosynthesis. Microsomal electron transport and C-32 demethylation. J Biol Chem. 1984 Nov 10;259(21):13402–13412. [PubMed] [Google Scholar]
- Trzaskos J., Kawata S., Gaylor J. L. Microsomal enzymes of cholesterol biosynthesis. Purification of lanosterol 14 alpha-methyl demethylase cytochrome P-450 from hepatic microsomes. J Biol Chem. 1986 Nov 5;261(31):14651–14657. [PubMed] [Google Scholar]
- Uno J., Shigematsu M. L., Arai T. Primary site of action of ketoconazole on Candida albicans. Antimicrob Agents Chemother. 1982 Jun;21(6):912–918. doi: 10.1128/aac.21.6.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WELLS M. A., DITTMER J. C. THE USE OF SEPHADEX FOR THE REMOVAL OF NONLIPID CONTAMINANTS FROM LIPID EXTRACTS. Biochemistry. 1963 Nov-Dec;2:1259–1263. doi: 10.1021/bi00906a015. [DOI] [PubMed] [Google Scholar]
- Yeagle P. L., Martin R. B., Lala A. K., Lin H. K., Bloch K. Differential effects of cholesterol and lanosterol on artificial membranes. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4924–4926. doi: 10.1073/pnas.74.11.4924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida Y., Aoyama Y. Interaction of azole antifungal agents with cytochrome P-45014DM purified from Saccharomyces cerevisiae microsomes. Biochem Pharmacol. 1987 Jan 15;36(2):229–235. doi: 10.1016/0006-2952(87)90694-0. [DOI] [PubMed] [Google Scholar]
- van den Bossche H., Willemsens G., Cools W., Lauwers W. F., Le Jeune L. Biochemical effects of miconazole on fungi. II. Inhibition of ergosterol biosynthesis in Candida albicans. Chem Biol Interact. 1978 Apr;21(1):59–78. doi: 10.1016/0009-2797(78)90068-6. [DOI] [PubMed] [Google Scholar]