Abstract
The metabolism of 1-11C-labelled derivatives of palmitic (C16:0), arachidonic (C20:4,n-6) lignoceric (C21:0) and tetracosatetraenoic (C24:4,n-6) acids was studied in normal skin fibroblast cultures and in cultures of fibroblasts from peroxisome-deficient (Zellweger's syndrome) patients. Radiolabelled products of the fatty acids included carbon dioxide. C14-24 saturated and mono-unsaturated fatty acids formed from released acetate either by synthesis de novo or by elongation of endogenous fatty acids, fatty acids formed by 2-6-carbon elongation of added substrates, and a number of water-soluble compounds, some of which were tentatively identified as the amino acids glutamine, glutamic acid and asparagine. The labelled amino acids were found predominantly in the culture medium. Zellweger's syndrome fibroblasts showed a marked decrease in radiolabelled carbon dioxide and water-soluble-product formation from (I-14C)-labelled arachidonic, tetracosatetraenoic and lignoceric acids but not from [I-14C]palmitic acid, and the production of radiolabelled C14-18 fatty acids was also diminished. However, the elongation of individual fatty acids was either normal or above normal. Our data support the view that the oxidation of 20:4, 24:4 and 24:0 fatty acids in cultured skin fibroblasts takes place largely in peroxisomes, and further that the acetyl-CoA released by the beta-oxidation process is available for the synthesis of fatty acids and amino acids. We speculate that the generation of C2 units used for synthesis is a major peroxisomal function and that this function is absent or greatly impaired in Zellweger's syndrome cells.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arias J. A., Moser A. B., Goldfischer S. L. Ultrastructural and cytochemical demonstration of peroxisomes in cultured fibroblasts from patients with peroxisomal deficiency disorders. J Cell Biol. 1985 May;100(5):1789–1792. doi: 10.1083/jcb.100.5.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Banerjee N., Rosenthal M. D. Elongation of C20 polyunsaturated fatty acids by human skin fibroblasts. Biochim Biophys Acta. 1986 Oct 3;878(3):404–411. doi: 10.1016/0005-2760(86)90249-3. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brown F. R., 3rd, McAdams A. J., Cummins J. W., Konkol R., Singh I., Moser A. B., Moser H. W. Cerebro-hepato-renal (Zellweger) syndrome and neonatal adrenoleukodystrophy: similarities in phenotype and accumulation of very long chain fatty acids. Johns Hopkins Med J. 1982 Dec;151(6):344–351. [PubMed] [Google Scholar]
- Christensen E., Hagve T. A., Christophersen B. O. Mitochondrial and peroxisomal oxidation of arachidonic and eicosapentaenoic acid studied in isolated liver cells. Biochim Biophys Acta. 1986 Dec 5;879(3):313–321. doi: 10.1016/0005-2760(86)90220-1. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Gavino V. C., Miller J. S., Dillman J. M., Milo G. E., Cornwell D. G. Polyunsaturated fatty acid accumulation in the lipids of cultured fibroblasts and smooth muscle cells. J Lipid Res. 1981 Jan;22(1):57–62. [PubMed] [Google Scholar]
- Glatz J. F., Wagenmakers A. J., Veerkamp J. H., van Moerkerk H. T. Effect of clofibrate feeding on palmitate and branched-chain 2-oxo acid oxidation in rat liver and muscle. Biochem Pharmacol. 1983 Sep 1;32(17):2489–2493. doi: 10.1016/0006-2952(83)90007-2. [DOI] [PubMed] [Google Scholar]
- Goldfischer S., Moore C. L., Johnson A. B., Spiro A. J., Valsamis M. P., Wisniewski H. K., Ritch R. H., Norton W. T., Rapin I., Gartner L. M. Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science. 1973 Oct 5;182(4107):62–64. doi: 10.1126/science.182.4107.62. [DOI] [PubMed] [Google Scholar]
- Healy M. J., Kerner J., Bieber L. L. Enzymes of carnitine acylation. Is overt carnitine palmitoyltransferase of liver peroxisomal carnitine octanoyltransferase? Biochem J. 1988 Jan 1;249(1):231–237. doi: 10.1042/bj2490231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiltunen J. K., Kärki T., Hassinen I. E., Osmundsen H. beta-Oxidation of polyunsaturated fatty acids by rat liver peroxisomes. A role for 2,4-dienoyl-coenzyme A reductase in peroxisomal beta-oxidation. J Biol Chem. 1986 Dec 15;261(35):16484–16493. [PubMed] [Google Scholar]
- Hovik R., Osmundsen H. Peroxisomal beta-oxidation of long-chain fatty acids possessing different extents of unsaturation. Biochem J. 1987 Nov 1;247(3):531–535. doi: 10.1042/bj2470531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Igarashi M., Schaumburg H. H., Powers J., Kishmoto Y., Kolodny E., Suzuki K. Fatty acid abnormality in adrenoleukodystrophy. J Neurochem. 1976 Apr;26(4):851–860. doi: 10.1111/j.1471-4159.1976.tb04462.x. [DOI] [PubMed] [Google Scholar]
- Inomata M., Takaku F., Nagai Y., Saito M. Assay for polyunsaturated fatty acids by argentation--thin-layer chromatography using commercial thin-layer plates. Anal Biochem. 1982 Sep 1;125(1):197–202. doi: 10.1016/0003-2697(82)90402-x. [DOI] [PubMed] [Google Scholar]
- Kawamura N., Kishimoto Y. Characterization of water-soluble products of palmitic acid beta-oxidation by a rat brain preparation. J Neurochem. 1981 May;36(5):1786–1791. doi: 10.1111/j.1471-4159.1981.tb00432.x. [DOI] [PubMed] [Google Scholar]
- Kondrup J., Lazarow P. B. Flux of palmitate through the peroxisomal and mitochondrial beta-oxidation systems in isolated rat hepatocytes. Biochim Biophys Acta. 1985 Jun 14;835(1):147–153. doi: 10.1016/0005-2760(85)90041-4. [DOI] [PubMed] [Google Scholar]
- Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGarry J. D., Mannaerts G. P., Foster D. W. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest. 1977 Jul;60(1):265–270. doi: 10.1172/JCI108764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moser A. E., Singh I., Brown F. R., 3rd, Solish G. I., Kelley R. I., Benke P. J., Moser H. W. The cerebrohepatorenal (Zellweger) syndrome. Increased levels and impaired degradation of very-long-chain fatty acids and their use in prenatal diagnosis. N Engl J Med. 1984 May 3;310(18):1141–1146. doi: 10.1056/NEJM198405033101802. [DOI] [PubMed] [Google Scholar]
- Osmundsen H., Bjørnstad K. Inhibitory effects of some long-chain unsaturated fatty acids on mitochondrial beta-oxidation. Effects of streptozotocin-induced diabetes on mitochondrial beta-oxidation of polyunsaturated fatty acids. Biochem J. 1985 Sep 1;230(2):329–337. doi: 10.1042/bj2300329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osmundsen H., Neat C. E., Borrebaek B. Fatty acid products of peroxisomal beta-oxidation. Int J Biochem. 1980;12(4):625–630. doi: 10.1016/0020-711x(80)90015-4. [DOI] [PubMed] [Google Scholar]
- Poulos A. Diagnosis of Refsum's disease using [1-14C]phytanic acid as substrate. Clin Genet. 1981 Oct;20(4):247–253. doi: 10.1111/j.1399-0004.1981.tb01029.x. [DOI] [PubMed] [Google Scholar]
- Poulos A., Singh H., Paton B., Sharp P., Derwas N. Accumulation and defective beta-oxidation of very long chain fatty acids in Zellweger's syndrome, adrenoleukodystrophy and Refsum's disease variants. Clin Genet. 1986 May;29(5):397–408. doi: 10.1111/j.1399-0004.1986.tb00511.x. [DOI] [PubMed] [Google Scholar]
- Ramsay R. R. The soluble carnitine palmitoyltransferase from bovine liver. A comparison with the enzymes from peroxisomes and from the mitochondrial inner membrane. Biochem J. 1988 Jan 1;249(1):239–245. doi: 10.1042/bj2490239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenthal M. D., Hill J. R. Elongation of arachidonic and eicosapentaenoic acids limits their availability for thrombin-stimulated release from the glycerolipids of vascular endothelial cells. Biochim Biophys Acta. 1986 Feb 12;875(2):382–391. doi: 10.1016/0005-2760(86)90189-x. [DOI] [PubMed] [Google Scholar]
- Rosenthal M. D., Hill J. R. Human vascular endothelial cells synthesize and release 24- and 26-carbon polyunsaturated fatty acids. Biochim Biophys Acta. 1984 Sep 12;795(2):171–178. doi: 10.1016/0005-2760(84)90063-8. [DOI] [PubMed] [Google Scholar]
- Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983 May 6;220(4597):568–575. doi: 10.1126/science.6301011. [DOI] [PubMed] [Google Scholar]
- Sharp P., Poulos A., Fellenberg A., Johnson D. Structure and lipid distribution of polyenoic very-long-chain fatty acids in the brain of peroxisome-deficient patients (Zellweger syndrome). Biochem J. 1987 Nov 15;248(1):61–67. doi: 10.1042/bj2480061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh H., Derwas N., Poulos A. Beta-oxidation of very-long-chain fatty acids and their coenzyme A derivatives by human skin fibroblasts. Arch Biochem Biophys. 1987 May 1;254(2):526–533. doi: 10.1016/0003-9861(87)90133-0. [DOI] [PubMed] [Google Scholar]
- Singh H., Derwas N., Poulos A. Very long chain fatty acid beta-oxidation by subcellular fractions of normal and Zellweger syndrome skin fibroblasts. Arch Biochem Biophys. 1987 Sep;257(2):302–314. doi: 10.1016/0003-9861(87)90570-4. [DOI] [PubMed] [Google Scholar]
- Singh H., Poulos A. A comparative study of stearic and lignoceric acid oxidation by human skin fibroblasts. Arch Biochem Biophys. 1986 Oct;250(1):171–179. doi: 10.1016/0003-9861(86)90714-9. [DOI] [PubMed] [Google Scholar]
- Singh I., Moser A. E., Goldfischer S., Moser H. W. Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4203–4207. doi: 10.1073/pnas.81.13.4203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh I., Moser A. E., Moser H. W., Kishimoto Y. Adrenoleukodystrophy: impaired oxidation of very long chain fatty acids in white blood cells, cultured skin fibroblasts, and amniocytes. Pediatr Res. 1984 Mar;18(3):286–290. doi: 10.1203/00006450-198403000-00016. [DOI] [PubMed] [Google Scholar]
- Tsuji S., Ohno T., Miyatake T., Suzuki A., Yamakawa T. Fatty acid elongation activity in fibroblasts from patients with adrenoleukodystrophy (ALD). J Biochem. 1984 Oct;96(4):1241–1247. doi: 10.1093/oxfordjournals.jbchem.a134942. [DOI] [PubMed] [Google Scholar]
- Uda M., Singh I., Kishimoto Y. Glutamate formed from lignoceric acid by rat brain preparation in the presence of pyridine nucleotide and cytosolic factors: a brain-specific oxidation of very long chain fatty acids. Biochemistry. 1981 Mar 3;20(5):1295–1300. doi: 10.1021/bi00508a039. [DOI] [PubMed] [Google Scholar]
- Vamecq J. Chlorpromazine and carnitine-dependency of rat liver peroxisomal beta-oxidation of long-chain fatty acids. Biochem J. 1987 Feb 1;241(3):783–791. doi: 10.1042/bj2410783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veerkamp J. H., van Moerkerk T. B., Glatz J. F., Zuurveld J. G., Jacobs A. E., Wagenmakers A. J. 14CO2 production is no adequate measure of [14C]fatty acid oxidation. Biochem Med Metab Biol. 1986 Jun;35(3):248–259. doi: 10.1016/0885-4505(86)90080-0. [DOI] [PubMed] [Google Scholar]
- van Hinsbergh V. W., Veerkamp J. H., van Moerkerk H. T. Palmitate oxidation by rat skeletal muscle mitochondria. Comparison of polarographic and radiochemical experiments. Arch Biochem Biophys. 1978 Oct;190(2):762–771. doi: 10.1016/0003-9861(78)90337-5. [DOI] [PubMed] [Google Scholar]