Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Jun 15;260(3):717–723. doi: 10.1042/bj2600717

Isolation and structural analysis of rat gastric mucus glycoprotein suggests a homogeneous protein backbone.

J Dekker 1, W M Van Beurden-Lamers 1, A Oprins 1, G J Strous 1
PMCID: PMC1138736  PMID: 2764900

Abstract

We isolated monomeric gastric mucus glycoprotein from the rat stomach by applying three successive CsCl-density-gradient steps in the continuous presence of guanidinium chloride. The rat gastric mucin was pure as compared with mucin isolated without the chaotropic reagent. In addition, the presence of guanidinium chloride resulted in a better preservation of the protein moiety. The purified mucin was fractionated according to buoyant density and chemically radiolabelled on tyrosine or cysteine residues and digested with specific proteinases. Analysis of mucin fractions of various densities gave identical peptide patterns, suggesting that the fractions contain a common protein backbone. Electron-microscopic images of the individual mucin molecules were recorded using rotary shadowing. They showed large filamentous molecules with a mean length of 208 nm that, after proteolytic digestion, yielded glycopeptides with a mean length of 149 nm. Heterogeneity in buoyant density and electrophoretic mobility is located in this large glycopeptide which remains after proteolytic digestion. Metabolic labelling of the mucin with [35 S]sulphate and [3H]galactose, followed by purification and proteolytic digestion, revealed that this glycopeptide accounts for most of the mass and contains relatively little protein, but probably all the oligosaccharides and sulphate. As this protein part is masked by the oligosaccharides, detailed study by the methods described was not possible. The results indicate that rat gastric mucin is homogeneous in a major part of the protein backbone and that the heterogeneity of the molecule originates most likely from differences in sulphate and/or sugar composition.

Full text

PDF
717

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen A., Bell A., Mantle M., Pearson J. P. The structure and physiology of gastrointestinal mucus. Adv Exp Med Biol. 1982;144:115–133. doi: 10.1007/978-1-4615-9254-9_15. [DOI] [PubMed] [Google Scholar]
  2. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  3. Carlstedt I., Lindgren H., Sheehan J. K., Ulmsten U., Wingerup L. Isolation and characterization of human cervical-mucus glycoproteins. Biochem J. 1983 Apr 1;211(1):13–22. doi: 10.1042/bj2110013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eckhardt A. E., Timpte C. S., Abernethy J. L., Toumadje A., Johnson W. C., Jr, Hill R. L. Structural properties of porcine submaxillary gland apomucin. J Biol Chem. 1987 Aug 15;262(23):11339–11344. [PubMed] [Google Scholar]
  5. FRANCOIS C., MARSHALL R. D., NEUBERGER A. Carbohydrates in protein. 4. The determination of mannose in hen's-egg albumin by radioisotope dilution. Biochem J. 1962 May;83:335–341. doi: 10.1042/bj0830335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fowler W. E., Erickson H. P. Trinodular structure of fibrinogen. Confirmation by both shadowing and negative stain electron microscopy. J Mol Biol. 1979 Oct 25;134(2):241–249. doi: 10.1016/0022-2836(79)90034-2. [DOI] [PubMed] [Google Scholar]
  7. Gold D. V., Shochat D., Miller F. Protease digestion of colonic mucin. Evidence for the existence of two immunochemically distinct mucins. J Biol Chem. 1981 Jun 25;256(12):6354–6358. [PubMed] [Google Scholar]
  8. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  9. Hill H. D., Jr, Reynolds J. A., Hill R. L. Purification, composition, molecular weight, and subunit structure of ovine submaxillary mucin. J Biol Chem. 1977 Jun 10;252(11):3791–3798. [PubMed] [Google Scholar]
  10. Kamerling J. P., Gerwig G. J., Vliegenthart J. F., Clamp J. R. Characterization by gas-liquid chromatography-mass spectrometry and proton-magnetic-resonance spectroscopy of pertrimethylsilyl methyl glycosides obtained in the methanolysis of glycoproteins and glycopeptides. Biochem J. 1975 Dec;151(3):491–495. doi: 10.1042/bj1510491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Mantle M., Allen A. Isolation and characterization of the native glycoprotein from pig small-intestinal mucus. Biochem J. 1981 Apr 1;195(1):267–275. doi: 10.1042/bj1950267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mantle M., Mantle D., Allen A. Polymeric structure of pig small-intestinal mucus glycoprotein. Dissociation by proteolysis or by reduction of disulphide bridges. Biochem J. 1981 Apr 1;195(1):277–285. doi: 10.1042/bj1950277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ringler N. J., Selvakumar R., Woodward H. D., Simet I. M., Bhavanandan V. P., Davidson E. A. Structure of canine tracheobronchial mucin glycoprotein. Biochemistry. 1987 Aug 25;26(17):5322–5328. doi: 10.1021/bi00391a016. [DOI] [PubMed] [Google Scholar]
  15. Rose M. C., Voter W. A., Sage H., Brown C. F., Kaufman B. Effects of deglycosylation on the architecture of ovine submaxillary mucin glycoprotein. J Biol Chem. 1984 Mar 10;259(5):3167–3172. [PubMed] [Google Scholar]
  16. Sheehan J. K., Oates K., Carlstedt I. Electron microscopy of cervical, gastric and bronchial mucus glycoproteins. Biochem J. 1986 Oct 1;239(1):147–153. doi: 10.1042/bj2390147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shub M. D., Pang K. Y., Swann D. A., Walker W. A. Age-related changes in chemical composition and physical properties of mucus glycoproteins from rat small intestine. Biochem J. 1983 Nov 1;215(2):405–411. doi: 10.1042/bj2150405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smits H. L., van Kerkhof P. J., Kramer M. F. Isolation and partial characterization of rat duodenal-gland (Brunner's-gland) mucus glycoprotein. Biochem J. 1982 Jun 1;203(3):779–785. doi: 10.1042/bj2030779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Spee-Brand R., Strous G. J., Kramer M. F. Isolation and partial characterization of rat gastric mucous glycoprotein. Biochim Biophys Acta. 1980 Jan 24;621(1):104–116. doi: 10.1016/0005-2795(80)90066-5. [DOI] [PubMed] [Google Scholar]
  20. Stanley R. A., Lee S. P., Roberton A. M. Heterogeneity in gastrointestinal mucins. Biochim Biophys Acta. 1983 Oct 18;760(2):262–269. doi: 10.1016/0304-4165(83)90172-1. [DOI] [PubMed] [Google Scholar]
  21. Swallow D. M., Gendler S., Griffiths B., Corney G., Taylor-Papadimitriou J., Bramwell M. E. The human tumour-associated epithelial mucins are coded by an expressed hypervariable gene locus PUM. Nature. 1987 Jul 2;328(6125):82–84. doi: 10.1038/328082a0. [DOI] [PubMed] [Google Scholar]
  22. Wesley A., Mantle M., Man D., Qureshi R., Forstner G., Forstner J. Neutral and acidic species of human intestinal mucin. Evidence for different core peptides. J Biol Chem. 1985 Jul 5;260(13):7955–7959. [PubMed] [Google Scholar]
  23. van Beurden-Lamers W. M., Spee-Brand R., Dekker J., Strous G. J. Sulphation causes heterogeneity of gastric mucins. Biochim Biophys Acta. 1989 Mar 24;990(3):232–239. doi: 10.1016/s0304-4165(89)80039-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES