Abstract
1. The effect of hypocaloric feeding (25% of normal food intake for 21 days) of rats on the enzymic and metabolic adaptations in the gastrocnemius, plantaris and soleus muscles was studied. 2. In control and hypocaloric rats the muscle relaxation rates at 100 Hz were 35.76 and 11.38% force loss/10 ms respectively. Control rats exhibited enhanced force of muscle contraction as the frequency of stimulation increased from 10 to 100 Hz, with maximum force being at 100 Hz. Hypocaloric rats exhibited a decrease in the increment of force being exerted at high frequencies, with maintenance of force at lower stimulatory frequencies. 3. In muscles of hypocaloric rats, there were significant decreases in the maximal activities of hexokinase (17.6-37.0%), 6-phosphofructokinase (22.7-34.2%), pyruvate kinase (21.2-36.0%), citrate synthase (34.1-41.5%), oxoglutarate dehydrogenase (29.4-52.4%) and 3-hydroxyacyl-CoA dehydrogenase (26.7-32.1%), whereas the activities of glycogen phosphorylase increased (23.8-43.4%) compared with control values. 4. In soleus-muscle strip preparations of hypocaloric rats, there were significant decreases in the rates of lactate production (28.1%) and glucose oxidation (32.6%) compared with control preparations. 5. Mitochondrial preparations from muscles of hypocaloric rats incubated with various substrates exhibited decreased rates of oxygen uptake compared with control preparations. 6. In muscles of hypocaloric rats (gastrocnemius and soleus), there were significant decreases in the concentrations of glycogen (P less than 0.001) and phosphocreatine (P less than 0.001) and increases in those of pyruvate (P less than 0.001), lactate (P less than 0.001) and ADP (P less than 0.001), whereas those of ATP and AMP remained unchanged. 7. Calculated [lactate]/[pyruvate] and [ATP]/[ADP] ratios exhibited significant increases (P less than 0.05) and decreases (P less than 0.05) in muscles of hypocaloric rats respectively. 8. The results are discussed in relation to the genesis of muscle dysfunction caused by malnutrition.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alp P. R., Newsholme E. A., Zammit V. A. Activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochem J. 1976 Mar 15;154(3):689–700. doi: 10.1042/bj1540689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ardawi M. S., Newsholme E. A. Fuel utilization in colonocytes of the rat. Biochem J. 1985 Nov 1;231(3):713–719. doi: 10.1042/bj2310713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ardawi M. S., Newsholme E. A. Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilization pathways in lymphocytes of the rat. Biochem J. 1982 Dec 15;208(3):743–748. doi: 10.1042/bj2080743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ardawi M. S. The maximal activity of phosphate-dependent glutaminase and glutamine metabolism in the colon and the small intestine of streptozotocin-diabetic rats. Diabetologia. 1987 Feb;30(2):109–114. doi: 10.1007/BF00274581. [DOI] [PubMed] [Google Scholar]
- Ardawi M. S. The transport of glutamine and alanine into rat colonocytes. Biochem J. 1986 Aug 15;238(1):131–135. doi: 10.1042/bj2380131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bass A., Gutmann E., Hanzlíková V., Teisinger J. Effects of ischaemia on enzyme-activities in the soleus muscle of the rat. Pflugers Arch. 1979 Mar 16;379(2):203–208. doi: 10.1007/BF00586949. [DOI] [PubMed] [Google Scholar]
- Blackburn G. L., Bistrian B. R., Maini B. S., Schlamm H. T., Smith M. F. Nutritional and metabolic assessment of the hospitalized patient. JPEN J Parenter Enteral Nutr. 1977;1(1):11–22. doi: 10.1177/014860717700100101. [DOI] [PubMed] [Google Scholar]
- Buzby G. P., Mullen J. L., Matthews D. C., Hobbs C. L., Rosato E. F. Prognostic nutritional index in gastrointestinal surgery. Am J Surg. 1980 Jan;139(1):160–167. doi: 10.1016/0002-9610(80)90246-9. [DOI] [PubMed] [Google Scholar]
- Chen R. F. Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem. 1967 Jan 25;242(2):173–181. [PubMed] [Google Scholar]
- Conconi F., Ferrari M., Ziglio P. G., Droghetti P., Codeca L. Determination of the anaerobic threshold by a noninvasive field test in runners. J Appl Physiol Respir Environ Exerc Physiol. 1982 Apr;52(4):869–873. doi: 10.1152/jappl.1982.52.4.869. [DOI] [PubMed] [Google Scholar]
- Cooney G. J., Taegtmeyer H., Newsholme E. A. Tricarboxylic acid cycle flux and enzyme activities in the isolated working rat heart. Biochem J. 1981 Dec 15;200(3):701–703. doi: 10.1042/bj2000701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crabtree B., Newsholme E. A. The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and the glycerol 3-phosphate dehydrogenases in muscles from vertebrates and invertebrates. Biochem J. 1972 Jan;126(1):49–58. doi: 10.1042/bj1260049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crettaz M., Prentki M., Zaninetti D., Jeanrenaud B. Insulin resistance in soleus muscle from obese Zucker rats. Involvement of several defective sites. Biochem J. 1980 Feb 15;186(2):525–534. doi: 10.1042/bj1860525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies K. J., Packer L., Brooks G. A. Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training. Arch Biochem Biophys. 1981 Jul;209(2):539–554. doi: 10.1016/0003-9861(81)90312-x. [DOI] [PubMed] [Google Scholar]
- Dimitriadis G. D., Leighton B., Vlachonikolis I. G., Parry-Billings M., Challiss R. A., West D., Newsholme E. A. Effects of hyperthyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin in the soleus muscle of the rat. Biochem J. 1988 Jul 1;253(1):87–92. doi: 10.1042/bj2530087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dionigi R., Dominioni L., Jemos V., Cremaschi R., Monico R. Diagnosing malnutrition. Gut. 1986 Nov;27 (Suppl 1):5–8. doi: 10.1136/gut.27.suppl_1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards R. H. Physiological analysis of skeletal muscle weakness and fatigue. Clin Sci Mol Med. 1978 May;54(5):463–470. doi: 10.1042/cs0540463. [DOI] [PubMed] [Google Scholar]
- Espinal J., Dohm G. L., Newsholme E. A. Sensitivity to insulin of glycolysis and glycogen synthesis of isolated soleus-muscle strips from sedentary, exercised and exercise-trained rats. Biochem J. 1983 May 15;212(2):453–458. doi: 10.1042/bj2120453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. J Physiol. 1978 Mar;276:233–255. doi: 10.1113/jphysiol.1978.sp012231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hermansen L. Effect of metabolic changes on force generation in skeletal muscle during maximal exercise. Ciba Found Symp. 1981;82:75–88. doi: 10.1002/9780470715420.ch5. [DOI] [PubMed] [Google Scholar]
- Hermansen L., Hultman E., Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiol Scand. 1967 Oct-Nov;71(2):129–139. doi: 10.1111/j.1748-1716.1967.tb03719.x. [DOI] [PubMed] [Google Scholar]
- Hultman E., Sjöholm H., Sahlin K., Edström L. Glycolytic and oxidative energy metabolism and contraction characteristics of intact human muscle. Ciba Found Symp. 1981;82:19–40. [PubMed] [Google Scholar]
- Jeejeebhoy K. N. Protein nutrition in clinical practice. Br Med Bull. 1981 Jan;37(1):11–17. doi: 10.1093/oxfordjournals.bmb.a071669. [DOI] [PubMed] [Google Scholar]
- Karlsson J., Saltin B. Lactate, ATP, and CP in working muscles during exhaustive exercise in man. J Appl Physiol. 1970 Nov;29(5):596–602. doi: 10.1152/jappl.1970.29.5.598. [DOI] [PubMed] [Google Scholar]
- Katz A., Sahlin K. Effect of decreased oxygen availability on NADH and lactate contents in human skeletal muscle during exercise. Acta Physiol Scand. 1987 Sep;131(1):119–127. doi: 10.1111/j.1748-1716.1987.tb08213.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lopes J., Russell D. M., Whitwell J., Jeejeebhoy K. N. Skeletal muscle function in malnutrition. Am J Clin Nutr. 1982 Oct;36(4):602–610. doi: 10.1093/ajcn/36.4.602. [DOI] [PubMed] [Google Scholar]
- Meakins J. L., Pietsch J. B., Bubenick O., Kelly R., Rode H., Gordon J., MacLean L. D. Delayed hypersensitivity: indicator of acquired failure of host defenses in sepsis and trauma. Ann Surg. 1977 Sep;186(3):241–250. doi: 10.1097/00000658-197709000-00002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan-Hughes J. A., Hayes D. J., Clark J. B., Landon D. N., Swash M., Stark R. J., Rudge P. Mitochondrial encephalomyopathies: biochemical studies in two cases revealing defects in the respiratory chain. Brain. 1982 Sep;105(Pt 3):553–582. doi: 10.1093/brain/105.3.553. [DOI] [PubMed] [Google Scholar]
- Opie L. H., Newsholme E. A. The inhibition of skeletal-muscle fructose 1,6-diphosphatase by adenosine monophosphate. Biochem J. 1967 Aug;104(2):353–360. doi: 10.1042/bj1040353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pruett E. D. Glucose and insulin during prolonged work stress in men living on different diets. J Appl Physiol. 1970 Feb;28(2):199–208. doi: 10.1152/jappl.1970.28.2.199. [DOI] [PubMed] [Google Scholar]
- Russell D. M., Atwood H. L., Whittaker J. S., Itakura T., Walker P. M., Mickle D. A., Jeejeebhoy K. N. The effect of fasting and hypocaloric diets on the functional and metabolic characteristics of rat gastrocnemius muscle. Clin Sci (Lond) 1984 Aug;67(2):185–194. doi: 10.1042/cs0670185. [DOI] [PubMed] [Google Scholar]
- Russell D. M., Leiter L. A., Whitwell J., Marliss E. B., Jeejeebhoy K. N. Skeletal muscle function during hypocaloric diets and fasting: a comparison with standard nutritional assessment parameters. Am J Clin Nutr. 1983 Jan;37(1):133–138. doi: 10.1093/ajcn/37.1.133. [DOI] [PubMed] [Google Scholar]
- Russell D. M., Prendergast P. J., Darby P. L., Garfinkel P. E., Whitwell J., Jeejeebhoy K. N. A comparison between muscle function and body composition in anorexia nervosa: the effect of refeeding. Am J Clin Nutr. 1983 Aug;38(2):229–237. doi: 10.1093/ajcn/38.2.229. [DOI] [PubMed] [Google Scholar]
- Russell D. M., Walker P. M., Leiter L. A., Sima A. A., Tanner W. K., Mickle D. A., Whitwell J., Marliss E. B., Jeejeebhoy K. N. Metabolic and structural changes in skeletal muscle during hypocaloric dieting. Am J Clin Nutr. 1984 Apr;39(4):503–513. doi: 10.1093/ajcn/39.4.503. [DOI] [PubMed] [Google Scholar]
- Sahlin K., Alvestrand A., Brandt R., Hultman E. Intracellular pH and bicarbonate concentration in human muscle during recovery from exercise. J Appl Physiol Respir Environ Exerc Physiol. 1978 Sep;45(3):474–480. doi: 10.1152/jappl.1978.45.3.474. [DOI] [PubMed] [Google Scholar]
- WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
- Wiles C. M., Young A., Jones D. A., Edwards R. H. Relaxation rate of constituent muscle-fibre types in human quadriceps. Clin Sci (Lond) 1979 Jan;56(1):47–52. doi: 10.1042/cs0560047. [DOI] [PubMed] [Google Scholar]
- Zammit V. A., Beis I., Newsholme E. A. Maximum activities and effects of fructose bisphosphate on pyruvate kinase from muscles of vertebrates and invertebrates in relation to the control of glycolysis. Biochem J. 1978 Sep 15;174(3):989–998. doi: 10.1042/bj1740989. [DOI] [PMC free article] [PubMed] [Google Scholar]