Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Jul 1;261(1):273–276. doi: 10.1042/bj2610273

Studies on fatty-acid-binding proteins. The purification of rat liver fatty-acid-binding protein and the role of cysteine-69 in fatty acid binding.

D C Wilton 1
PMCID: PMC1138812  PMID: 2775214

Abstract

1. A new, simple and high-yield procedure is described for the purification of hepatic fatty-acid-binding protein from rat liver using naphthylaminodecyl-agarose as an affinity column. 2. Cysteine-69 is shown to react slowly, but quantitatively, with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), indicating that the thiol group is free, but may be buried within the protein. 3. Fatty acids do not affect the DTNB reactivity of this cysteine residue; however, cysteine reactivity is enhanced in the presence of haem and oleoyl-CoA. 4. Fatty-acid-binding protein that has been modified with DTNB is still able to bind the fluorescent fatty acid 11-(dansylamino)undecanoic acid, indicating that cysteine-69 may be remote from the fatty-acid-binding site.

Full text

PDF
273

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassuk J. A., Tsichlis P. N., Sorof S. Liver fatty acid binding protein is the mitosis-associated polypeptide target of a carcinogen in rat hepatocytes. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7547–7551. doi: 10.1073/pnas.84.21.7547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brecher P. The interaction of long-chain acyl CoA with membranes. Mol Cell Biochem. 1983;57(1):3–15. doi: 10.1007/BF00223520. [DOI] [PubMed] [Google Scholar]
  3. Glatz J. F., Veerkamp J. H. Intracellular fatty acid-binding proteins. Int J Biochem. 1985;17(1):13–22. doi: 10.1016/0020-711x(85)90080-1. [DOI] [PubMed] [Google Scholar]
  4. Kawashima Y., Nakagawa S., Tachibana Y., Kozuka H. Effects of peroxisome proliferators on fatty acid-binding protein in rat liver. Biochim Biophys Acta. 1983 Nov 1;754(1):21–27. doi: 10.1016/0005-2760(83)90077-2. [DOI] [PubMed] [Google Scholar]
  5. Ketterer B., Tipping E., Hackney J. F., Beale D. A low-molecular-weight protein from rat liver that resembles ligandin in its binding properties. Biochem J. 1976 Jun 1;155(3):511–521. doi: 10.1042/bj1550511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Mills J. S., Walsh M. P., Nemcek K., Johnson J. D. Biologically active fluorescent derivatives of spinach calmodulin that report calmodulin target protein binding. Biochemistry. 1988 Feb 9;27(3):991–996. doi: 10.1021/bi00403a023. [DOI] [PubMed] [Google Scholar]
  8. Noel J. K., Hunter M. J. Bovine mercaptalbumin and non-mercaptalbumin monomers. Interconversions and structural differences. J Biol Chem. 1972 Nov 25;247(22):7391–7406. [PubMed] [Google Scholar]
  9. Ockner R. K., Manning J. A., Kane J. P. Fatty acid binding protein. Isolation from rat liver, characterization, and immunochemical quantification. J Biol Chem. 1982 Jul 10;257(13):7872–7878. [PubMed] [Google Scholar]
  10. Riddles P. W., Blakeley R. L., Zerner B. Reassessment of Ellman's reagent. Methods Enzymol. 1983;91:49–60. doi: 10.1016/s0076-6879(83)91010-8. [DOI] [PubMed] [Google Scholar]
  11. Sacchettini J. C., Gordon J. I., Banaszak L. J. The structure of crystalline Escherichia coli-derived rat intestinal fatty acid-binding protein at 2.5-A resolution. J Biol Chem. 1988 Apr 25;263(12):5815–5819. [PubMed] [Google Scholar]
  12. Seifried S. E., Wang Y., von Hippel P. H. Fluorescent modification of the cysteine 202 residue of Escherichia coli transcription termination factor rho. J Biol Chem. 1988 Sep 25;263(27):13511–13514. [PubMed] [Google Scholar]
  13. Sweetser D. A., Heuckeroth R. O., Gordon J. I. The metabolic significance of mammalian fatty-acid-binding proteins: abundant proteins in search of a function. Annu Rev Nutr. 1987;7:337–359. doi: 10.1146/annurev.nu.07.070187.002005. [DOI] [PubMed] [Google Scholar]
  14. Takabayashi K., Imada T., Saito Y., Inada Y. Coupling between fatty acid binding and sulfhydryl oxidation in bovine serum albumin. Eur J Biochem. 1983 Nov 2;136(2):291–295. doi: 10.1111/j.1432-1033.1983.tb07740.x. [DOI] [PubMed] [Google Scholar]
  15. Tipping E., Ketterer B., Christodoulides L., Enderby G. The interactions of haem with ligandin and aminoazo-dye-binding protein A. Biochem J. 1976 Aug 1;157(2):461–467. doi: 10.1042/bj1570461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vincent S. H., Muller-Eberhard U. A protein of the Z class of liver cytosolic proteins in the rat that preferentially binds heme. J Biol Chem. 1985 Nov 25;260(27):14521–14528. [PubMed] [Google Scholar]
  17. Wilkinson T. C., Wilton D. C. Studies on fatty acid-binding proteins. The binding properties of rat liver fatty acid-binding protein. Biochem J. 1987 Oct 15;247(2):485–488. doi: 10.1042/bj2470485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wilkinson T. C., Wilton D. C. Studies on fatty acid-binding proteins. The detection and quantification of the protein from rat liver by using a fluorescent fatty acid analogue. Biochem J. 1986 Sep 1;238(2):419–424. doi: 10.1042/bj2380419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yuan S. X., Haug A. Ligand-triggered conformational perturbations elicit changes at the single cysteinyl residue of spinach calmodulin. Eur J Biochem. 1988 Jul 15;175(1):119–124. doi: 10.1111/j.1432-1033.1988.tb14173.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES