Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Jul 15;261(2):575–580. doi: 10.1042/bj2610575

Acylation of 2-acyl-glycerophosphocholine in guinea-pig heart microsomal fractions.

G Arthur 1
PMCID: PMC1138863  PMID: 2775234

Abstract

Acyl-CoA:2-acyl-sn-glycero-3-phosphocholine (GPC) acyltransferase is required for the maintenance of the asymmetric distribution of saturated fatty acids at the C-1 position of phosphatidylcholine; however, this activity has been reported to be absent in cardiac tissue. In the present study a very active acyl-CoA:2-acyl-GPC activity was detected and characterized in guinea-pig heart microsomes (microsomal fractions); the mitochondria did not appear to possess this activity. The acyl-CoA specificity of the microsomal acyl-CoA:2-acyl-GPC acyltransferase was distinct from the corresponding acyl-CoA:1-acyl-GPC acyltransferase. These differences were due to the position of the fatty acid on the lysophospholipid rather than the composition of the fatty acids. The enzyme did not exhibit a distinct preference for saturated fatty acids, as might be expected. Our results suggest that, in the heart, control of the intracellular composition and concentration of acyl-CoAs by acyl-CoA hydrolase and acyl-CoA synthetase may play an important role in maintaining the asymmetric distribution of fatty acids in phosphatidylcholine.

Full text

PDF
575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur G., Choy P. C. Acylation of 1-alkenyl-glycerophosphocholine and 1-acyl-glycerophosphocholine in guinea pig heart. Biochem J. 1986 Jun 1;236(2):481–487. doi: 10.1042/bj2360481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arthur G. Lysophospholipase A2 activity in guinea-pig heart microsomal fractions displaying high activities with 2-acylglycerophosphocholines with linoleic and arachidonic acids. Biochem J. 1989 Jul 15;261(2):581–586. doi: 10.1042/bj2610581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arthur G., Mock T., Zaborniak C., Choy P. C. The distribution and acyl composition of plasmalogens in guinea pig heart. Lipids. 1985 Oct;20(10):693–698. doi: 10.1007/BF02534389. [DOI] [PubMed] [Google Scholar]
  4. Arthur G., Page L. L., Zaborniak C. L., Choy P. C. The acylation of lysophosphoradylglycerocholines in guinea-pig heart mitochondria. Biochem J. 1987 Feb 15;242(1):171–175. doi: 10.1042/bj2420171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arthur G., Page L., Mock T., Choy P. C. The catabolism of plasmenylcholine in the guinea pig heart. Biochem J. 1986 Jun 1;236(2):475–480. doi: 10.1042/bj2360475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Arvidson G. A. Structural and metabolic heterogeneity of rat liver glycerophosphatides. Eur J Biochem. 1968 May;4(4):478–486. doi: 10.1111/j.1432-1033.1968.tb00237.x. [DOI] [PubMed] [Google Scholar]
  7. Colard O., Breton M., Bereziat G. Arachidonate mobilization in diacyl, alkylacyl and alkenylacyl phospholipids on stimulation of rat platelets by thrombin and the Ca2+ ionophore A23187. Biochem J. 1986 Feb 1;233(3):691–695. doi: 10.1042/bj2330691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deka N., Sun G. Y., MacQuarrie R. Purification and properties of acyl-CoA:1-acyl-sn-glycero-3-phosphocholine-O-acyltransferase from bovine brain microsomes. Arch Biochem Biophys. 1986 May 1;246(2):554–563. doi: 10.1016/0003-9861(86)90310-3. [DOI] [PubMed] [Google Scholar]
  9. Gross R. W. High plasmalogen and arachidonic acid content of canine myocardial sarcolemma: a fast atom bombardment mass spectroscopic and gas chromatography-mass spectroscopic characterization. Biochemistry. 1984 Jan 3;23(1):158–165. doi: 10.1021/bi00296a026. [DOI] [PubMed] [Google Scholar]
  10. Gross R. W. Identification of plasmalogen as the major phospholipid constituent of cardiac sarcoplasmic reticulum. Biochemistry. 1985 Mar 26;24(7):1662–1668. doi: 10.1021/bi00328a014. [DOI] [PubMed] [Google Scholar]
  11. Hasegawa-Sasaki H., Ohno K. Extraction and partial purification of acyl-CoA:1-acyl-sn-glycero-3-phosphocholine acyltransferase from rat liver microsomes. Biochim Biophys Acta. 1980 Feb 22;617(2):205–217. [PubMed] [Google Scholar]
  12. Holub B. J. The suitability of different acyl acceptors as substrates for the acyl-Coa : 2-acyl-sn-glycero-3-phosphorylcholine acyltransferase in rat liver microsomes. Biochim Biophys Acta. 1981 May 22;664(2):221–228. doi: 10.1016/0005-2760(81)90044-8. [DOI] [PubMed] [Google Scholar]
  13. LANDS W. E., HART P. METABOLISM OF GLYCEROLIPIDS. VI. SPECIFICITIES OF ACYL COENZYME A: PHOSPHOLIPID ACYLTRANSFERASES. J Biol Chem. 1965 May;240:1905–1911. [PubMed] [Google Scholar]
  14. LANDS W. E., MERKL I. Metabolism of glycerolipids. III. Reactivity of various acyl esters of coenzyme A with alpha'-acylglycerophosphorylcholine, and positional specificities in lecithin synthesis. J Biol Chem. 1963 Mar;238:898–904. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Neumüller W., Fleer E. A., Unger C., Eibl H. Enzymatic acylation of ether and ester lysophospholipids in rat liver microsomes. Lipids. 1987 Nov;22(11):808–812. doi: 10.1007/BF02535535. [DOI] [PubMed] [Google Scholar]
  17. Reitz R. C., Lands W. E., Christie W. W., Holman R. T. Effects of ethylenic bond position upon acyltransferase activity with isomeric cis,cis-octadecadienoyl coenzyme A thiol esters. J Biol Chem. 1968 May 10;243(9):2241–2246. [PubMed] [Google Scholar]
  18. Van Den Bosch H., Van Golde M. G., Slotboom A. J., Van Deenen L. L. The acylation of isomeric monoacyl phosphatidylcholines. Biochim Biophys Acta. 1968 Jul 1;152(4):694–703. doi: 10.1016/0005-2760(68)90115-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES