Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Aug 1;261(3):787–792. doi: 10.1042/bj2610787

Low-Mr iron isolated from guinea pig reticulocytes as AMP-Fe and ATP-Fe complexes.

J Weaver 1, S Pollack 1
PMCID: PMC1138900  PMID: 2803243

Abstract

Guinea pig reticulocytes were pulse-labelled with 59Fe bound to transferrin. Haemolysates prepared from these reticulocytes were subjected to rapid (NH1)2SO1 precipitation and then chromatography on an anion-exchange resin. ATP-bound 59Fe was the dominant species in the reticulocyte cytosol; 2,3-bisphosphoglycerate and GTP iron complexes were not detected despite the fact that these were stable with (NH1)2SO1 precipitation and readily detected with anion-exchange chromatography. AMP-bound Fe was a minor component of the cytosol following rapid (NH1)2SO4 precipitation, and the major component when iron was released from transferrin by haemolysates. We speculate that ATP-Fe may be degraded in the cell to permit utilization of its iron for haem synthesis.

Full text

PDF
787

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakkeren D. L., de Jeu-Jaspars C. M., van der Heul C., van Eijk H. G. Analysis of iron-binding components in the low molecular weight fraction of rat reticulocyte cytosol. Int J Biochem. 1985;17(8):925–930. doi: 10.1016/0020-711x(85)90177-6. [DOI] [PubMed] [Google Scholar]
  2. Bartlett G. R. Iron nucleotides in human and rat red cells. Biochem Biophys Res Commun. 1976 Jun 21;70(4):1063–1070. doi: 10.1016/0006-291x(76)91010-x. [DOI] [PubMed] [Google Scholar]
  3. Biemond P., Swaak A. J., van Eijk H. G., Koster J. F. Superoxide dependent iron release from ferritin in inflammatory diseases. Free Radic Biol Med. 1988;4(3):185–198. doi: 10.1016/0891-5849(88)90026-3. [DOI] [PubMed] [Google Scholar]
  4. Bomford A., Young S., Williams R. Intracellular forms of iron during transferrin iron uptake by mitogen-stimulated human lymphocytes. Br J Haematol. 1986 Mar;62(3):487–494. doi: 10.1111/j.1365-2141.1986.tb02960.x. [DOI] [PubMed] [Google Scholar]
  5. Borová J., Ponka P., Neuwirt J. Study of intracellular iron distribution in rabbit reticulocytes with normal and inhibited heme synthesis. Biochim Biophys Acta. 1973 Aug 17;320(1):143–156. doi: 10.1016/0304-4165(73)90174-8. [DOI] [PubMed] [Google Scholar]
  6. Boulard M., Delin M., Najean Y., Beutler E. Identification and purification of a new non-heme, non-ferritin iron protein. Proc Soc Exp Biol Med. 1972 Apr;139(4):1379–1384. doi: 10.3181/00379727-139-36367. [DOI] [PubMed] [Google Scholar]
  7. Bunn H. F., Ransil B. J., Chao A. The interaction between erythrocyte organic phosphates, magnesium ion, and hemoglobin. J Biol Chem. 1971 Sep 10;246(17):5273–5279. [PubMed] [Google Scholar]
  8. Carver F. J., Frieden E. Factors affecting the adenosine triphosphate induced release of iron from transferrin. Biochemistry. 1978 Jan 10;17(1):167–172. doi: 10.1021/bi00594a024. [DOI] [PubMed] [Google Scholar]
  9. Fernandez-Pol J. A. Isolation and characterization of a siderophore-like growth factor from mutants of SV40-transformed cells adapted to picolinic acid. Cell. 1978 Jul;14(3):489–499. doi: 10.1016/0092-8674(78)90235-0. [DOI] [PubMed] [Google Scholar]
  10. Jacobs A. Low molecular weight intracellular iron transport compounds. Blood. 1977 Sep;50(3):433–439. [PubMed] [Google Scholar]
  11. Jones R. L., Grady R. W., Sorette M. P., Cerami A. Host-associated iron transfer factor in normal humans and patients with transfusion siderosis. J Lab Clin Med. 1986 May;107(5):431–438. [PubMed] [Google Scholar]
  12. Konopka K., Szotor M. Determination of iron in the acid-soluble fraction of human erythrocytes. Acta Haematol. 1972;47(3):157–163. doi: 10.1159/000208510. [DOI] [PubMed] [Google Scholar]
  13. LaCross D. M., Linder M. C. Synthesis of rat muscle ferritins and function in iron metabolism of heart and diaphragm. Biochim Biophys Acta. 1980 Nov 17;633(1):45–55. doi: 10.1016/0304-4165(80)90036-7. [DOI] [PubMed] [Google Scholar]
  14. Mansour A. N., Thompson C., Theil E. C., Chasteen N. D., Sayers D. E. Fe(III).ATP complexes. Models for ferritin and other polynuclear iron complexes with phosphate. J Biol Chem. 1985 Jul 5;260(13):7975–7979. [PubMed] [Google Scholar]
  15. Mansour M. M., Schulert A. R., Glasser S. R. Mechanism of placental iron transfer in the rat. Am J Physiol. 1972 Jun;222(6):1628–1633. doi: 10.1152/ajplegacy.1972.222.6.1628. [DOI] [PubMed] [Google Scholar]
  16. Meyers N. L., Brewer G. J., Oelshlegel F. J., Jr Iron-ATP, a by-product of acid extraction of whole blood or red blood cells. Biochim Biophys Acta. 1973 Sep 14;320(2):397–405. doi: 10.1016/0304-4165(73)90321-8. [DOI] [PubMed] [Google Scholar]
  17. Milsom J. P., Batey R. G. The mechanism of hepatic iron uptake from native and denatured transferrin and its subcellular metabolism in the liver cell. Biochem J. 1979 Jul 15;182(1):117–125. doi: 10.1042/bj1820117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Morgan E. H. Studies on the mechanism of iron release from transferrin. Biochim Biophys Acta. 1979 Oct 24;580(2):312–326. doi: 10.1016/0005-2795(79)90144-2. [DOI] [PubMed] [Google Scholar]
  19. Mulligan M., Althaus B., Linder M. C. Non-ferritin, non-heme iron pools in rat tissues. Int J Biochem. 1986;18(9):791–798. doi: 10.1016/0020-711x(86)90055-8. [DOI] [PubMed] [Google Scholar]
  20. Nilsen T., Romslo I. Iron uptake and heme synthesis by isolated rat liver mitochondria. Diferric transferrin as iron donor and the effect of pyrophosphate. Biochim Biophys Acta. 1985 Oct 17;842(2-3):162–169. doi: 10.1016/0304-4165(85)90198-9. [DOI] [PubMed] [Google Scholar]
  21. Nunez M. T., Glass J., Robinson S. H. Mobilization of iron from the plasma membrane of the murine reticulocyte. The role of ferritin. Biochim Biophys Acta. 1978 May 4;509(1):170–180. doi: 10.1016/0005-2736(78)90017-2. [DOI] [PubMed] [Google Scholar]
  22. Pickart L., Thaler M. M. Growth-modulating tripeptide (glycylhistidyllysine): association with copper and iron in plasma, and stimulation of adhesiveness and growth of hepatoma cells in culture by tripeptide-metal ion complexes. J Cell Physiol. 1980 Feb;102(2):129–139. doi: 10.1002/jcp.1041020205. [DOI] [PubMed] [Google Scholar]
  23. Pippard M. J., Johnson D. K., Finch C. A. Hepatocyte iron kinetics in the rat explored with an iron chelator. Br J Haematol. 1982 Oct;52(2):211–224. doi: 10.1111/j.1365-2141.1982.tb03883.x. [DOI] [PubMed] [Google Scholar]
  24. Pollack S., Campana T., Weaver J. Low molecular weight iron in guinea pig reticulocytes. Am J Hematol. 1985 May;19(1):75–84. doi: 10.1002/ajh.2830190110. [DOI] [PubMed] [Google Scholar]
  25. Pollack S., Vanderhoff G., Lasky F. Iron removal from transferrin. An experimental study. Biochim Biophys Acta. 1977 Apr 27;497(2):481–487. doi: 10.1016/0304-4165(77)90205-7. [DOI] [PubMed] [Google Scholar]
  26. Pollack S., Weaver J. Guinea pig and human red cell hemolysates release iron from transferrin. J Lab Clin Med. 1985 May;105(5):629–634. [PubMed] [Google Scholar]
  27. Pollack S., Weaver J. Iron release from transferrin: synergistic interaction between adenosine triphosphate and an ammonium sulfate fraction of hemolysate. J Lab Clin Med. 1986 Nov;108(5):411–414. [PubMed] [Google Scholar]
  28. Primosigh J. V., Thomas E. D. Studies on the partition of iron in bone marrow cells. J Clin Invest. 1968 Jul;47(7):1473–1482. doi: 10.1172/JCI105841. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES