Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Aug 1;261(3):831–839. doi: 10.1042/bj2610831

The spin trapping of pyrimidine nucleotide free radicals in a Fenton system.

W D Flitter 1, R P Mason 1
PMCID: PMC1138906  PMID: 2552992

Abstract

The reaction of the hydroxyl radical, generated by a Fenton system, with pyrimidine deoxyribonucleotides was investigated by using the e.s.r. technique of spin trapping. The spin trap t-nitrosobutane was employed to trap secondary radicals formed by the reaction of the hydroxyl radical with these nucleotides. The results presented here show that hydroxyl-radical attack on thymidine, 2-deoxycytidine 5-monophosphate and 2-deoxyuridine 5-monophosphate produced nucleotide-derived free radicals. The results indicate that .OH radical attack occurs predominantly at the carbon-carbon double bond of the pyrimidine base. The e.s.r. studies showed a good correlation with previous results obtained by authors who used x- or gamma-ray irradiation to generate the hydroxyl radical. A thiobarbituric acid assay was also used to monitor the damage produced to the nucleotides by the Fenton system. These results showed qualitative agreement with the spin-trapping studies.

Full text

PDF
831

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buettner G. R. Spin trapping: ESR parameters of spin adducts. Free Radic Biol Med. 1987;3(4):259–303. doi: 10.1016/s0891-5849(87)80033-3. [DOI] [PubMed] [Google Scholar]
  2. Cathcart R., Schwiers E., Saul R. L., Ames B. N. Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5633–5637. doi: 10.1073/pnas.81.18.5633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheeseman K. H., Beavis A., Esterbauer H. Hydroxyl-radical-induced iron-catalysed degradation of 2-deoxyribose. Quantitative determination of malondialdehyde. Biochem J. 1988 Jun 15;252(3):649–653. doi: 10.1042/bj2520649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fitchett M., Gilbert B. C., Jeff M. Chemical models and radiation damage. Philos Trans R Soc Lond B Biol Sci. 1985 Dec 17;311(1152):517–529. doi: 10.1098/rstb.1985.0161. [DOI] [PubMed] [Google Scholar]
  5. Floyd R. A. DNA-ferrous iron catalyzed hydroxyl free radical formation from hydrogen peroxide. Biochem Biophys Res Commun. 1981 Apr 30;99(4):1209–1215. doi: 10.1016/0006-291x(81)90748-8. [DOI] [PubMed] [Google Scholar]
  6. Gutteridge J. M. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Biochem J. 1987 May 1;243(3):709–714. doi: 10.1042/bj2430709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gutteridge J. M., Rowley D. A., Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Detection of 'free' iron in biological systems by using bleomycin-dependent degradation of DNA. Biochem J. 1981 Oct 1;199(1):263–265. doi: 10.1042/bj1990263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gutteridge J. M. Thiobarbituric acid-reactivity following iron-dependent free-radical damage to amino acids and carbohydrates. FEBS Lett. 1981 Jun 15;128(2):343–346. doi: 10.1016/0014-5793(81)80113-5. [DOI] [PubMed] [Google Scholar]
  9. Gutteridge J. M., Wilkins S. Copper salt-dependent hydroxyl radical formation. Damage to proteins acting as antioxidants. Biochim Biophys Acta. 1983 Aug 23;759(1-2):38–41. doi: 10.1016/0304-4165(83)90186-1. [DOI] [PubMed] [Google Scholar]
  10. Halliwell B., Gutteridge J. M. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 1981 Jun 15;128(2):347–352. doi: 10.1016/0014-5793(81)80114-7. [DOI] [PubMed] [Google Scholar]
  11. Kominami S., Rokusnika S., Hatano H. Studies of spin-trapped radicals in gamma-irradiated aqueous solutions of thymidine-5'-monophosphate and cytidine-5'-monophosphate by liquid chromatography and ESR spectroscopy. Radiat Res. 1977 Oct;72(1):89–99. [PubMed] [Google Scholar]
  12. Koppenol W. H. The reaction of ferrous EDTA with hydrogen peroxide: evidence against hydroxyl radical formation. J Free Radic Biol Med. 1985;1(4):281–285. doi: 10.1016/0748-5514(85)90132-1. [DOI] [PubMed] [Google Scholar]
  13. Kuwabara M., Inanami O., Endoh D., Sato F. Spin trapping of precursors of thymine damage in X-irradiated DNA. Biochemistry. 1987 May 5;26(9):2458–2465. doi: 10.1021/bi00383a009. [DOI] [PubMed] [Google Scholar]
  14. Kuwabara M., Inanami O., Sato F. OH-induced free radicals in purine nucleosides and their homopolymers: e.s.r. and spin-trapping with 2-methyl-2-nitrosopropane. Int J Radiat Biol Relat Stud Phys Chem Med. 1986 May;49(5):829–844. doi: 10.1080/09553008514553031. [DOI] [PubMed] [Google Scholar]
  15. Kuwabara M., Minegishi A., Ito A., Ito T. A study of aqueous solutions of nucleic acid constituents exposed to monochromatic 160 nm vacuum-UV light by spin-trapping method. Photochem Photobiol. 1986 Sep;44(3):265–272. doi: 10.1111/j.1751-1097.1986.tb04663.x. [DOI] [PubMed] [Google Scholar]
  16. Kuwabara M., Yoshii G., Itoh T. Reactions of the hydrated electron with pyrimidine nucleosides halogenated at the sugar moiety: e.s.r. and spin-trapping with 2-methyl-2-nitrosopropane. Int J Radiat Biol Relat Stud Phys Chem Med. 1983 Aug;44(2):219–224. doi: 10.1080/09553008314551021. [DOI] [PubMed] [Google Scholar]
  17. Mansuy D., Chottard J. C., Chottard G. Nitrosoalkanes as Fe(II) ligands in the hemoglobin and myoglobin complexes formed from nitroalkanes in reducing conditions. Eur J Biochem. 1977 Jun 15;76(2):617–623. doi: 10.1111/j.1432-1033.1977.tb11632.x. [DOI] [PubMed] [Google Scholar]
  18. Mason R. P. Assay of in situ radicals by electron spin resonance. Methods Enzymol. 1984;105:416–422. doi: 10.1016/s0076-6879(84)05058-8. [DOI] [PubMed] [Google Scholar]
  19. McCord J. M., Day E. D., Jr Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett. 1978 Feb 1;86(1):139–142. doi: 10.1016/0014-5793(78)80116-1. [DOI] [PubMed] [Google Scholar]
  20. Mello Filho A. C., Meneghini R. In vivo formation of single-strand breaks in DNA by hydrogen peroxide is mediated by the Haber-Weiss reaction. Biochim Biophys Acta. 1984 Feb 24;781(1-2):56–63. doi: 10.1016/0167-4781(84)90123-4. [DOI] [PubMed] [Google Scholar]
  21. Roots R., Okada S. Protection of DNA molecules of cultured mammalian cells from radiation-induced single-strand scissions by various alcohols and SH compounds. Int J Radiat Biol Relat Stud Phys Chem Med. 1972 Apr;21(4):329–342. doi: 10.1080/09553007214550401. [DOI] [PubMed] [Google Scholar]
  22. Rush J. D., Koppenol W. H. Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. Reactions with organic molecules and ferrocytochrome c. J Biol Chem. 1986 May 25;261(15):6730–6733. [PubMed] [Google Scholar]
  23. SCHOLES G., WARD J. F., WEISS J. Mechanism of the radiation-induced degradation of nucleic acids. J Mol Biol. 1960 Dec;2:379–391. doi: 10.1016/s0022-2836(60)80049-6. [DOI] [PubMed] [Google Scholar]
  24. Samuni A., Chevion M., Czapski G. Unusual copper-induced sensitization of the biological damage due to superoxide radicals. J Biol Chem. 1981 Dec 25;256(24):12632–12635. [PubMed] [Google Scholar]
  25. Schmidt J., Borg D. C. Free radicals from purine nucleosides after hydroxyl radical attack. Radiat Res. 1976 Feb;65(2):220–237. [PubMed] [Google Scholar]
  26. Teoule R., Cadet J. Radiation-induced degradation of the base component in DNA and related substances--final products. Mol Biol Biochem Biophys. 1978;27:171–203. doi: 10.1007/978-3-642-81196-8_9. [DOI] [PubMed] [Google Scholar]
  27. Winterbourn C. C. The ability of scavengers to distinguish OH. production in the iron-catalyzed Haber-Weiss reaction: comparison of four assays for OH. Free Radic Biol Med. 1987;3(1):33–39. doi: 10.1016/0891-5849(87)90037-2. [DOI] [PubMed] [Google Scholar]
  28. Youngman R. J., Elstner E. F. Oxygen species in paraquat toxicity: the crypto-OH radical. FEBS Lett. 1981 Jul 6;129(2):265–268. doi: 10.1016/0014-5793(81)80180-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES