Abstract
The reaction of the hydroxyl radical, generated by a Fenton system, with pyrimidine deoxyribonucleotides was investigated by using the e.s.r. technique of spin trapping. The spin trap t-nitrosobutane was employed to trap secondary radicals formed by the reaction of the hydroxyl radical with these nucleotides. The results presented here show that hydroxyl-radical attack on thymidine, 2-deoxycytidine 5-monophosphate and 2-deoxyuridine 5-monophosphate produced nucleotide-derived free radicals. The results indicate that .OH radical attack occurs predominantly at the carbon-carbon double bond of the pyrimidine base. The e.s.r. studies showed a good correlation with previous results obtained by authors who used x- or gamma-ray irradiation to generate the hydroxyl radical. A thiobarbituric acid assay was also used to monitor the damage produced to the nucleotides by the Fenton system. These results showed qualitative agreement with the spin-trapping studies.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Buettner G. R. Spin trapping: ESR parameters of spin adducts. Free Radic Biol Med. 1987;3(4):259–303. doi: 10.1016/s0891-5849(87)80033-3. [DOI] [PubMed] [Google Scholar]
- Cathcart R., Schwiers E., Saul R. L., Ames B. N. Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5633–5637. doi: 10.1073/pnas.81.18.5633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheeseman K. H., Beavis A., Esterbauer H. Hydroxyl-radical-induced iron-catalysed degradation of 2-deoxyribose. Quantitative determination of malondialdehyde. Biochem J. 1988 Jun 15;252(3):649–653. doi: 10.1042/bj2520649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitchett M., Gilbert B. C., Jeff M. Chemical models and radiation damage. Philos Trans R Soc Lond B Biol Sci. 1985 Dec 17;311(1152):517–529. doi: 10.1098/rstb.1985.0161. [DOI] [PubMed] [Google Scholar]
- Floyd R. A. DNA-ferrous iron catalyzed hydroxyl free radical formation from hydrogen peroxide. Biochem Biophys Res Commun. 1981 Apr 30;99(4):1209–1215. doi: 10.1016/0006-291x(81)90748-8. [DOI] [PubMed] [Google Scholar]
- Gutteridge J. M. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Biochem J. 1987 May 1;243(3):709–714. doi: 10.1042/bj2430709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutteridge J. M., Rowley D. A., Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Detection of 'free' iron in biological systems by using bleomycin-dependent degradation of DNA. Biochem J. 1981 Oct 1;199(1):263–265. doi: 10.1042/bj1990263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutteridge J. M. Thiobarbituric acid-reactivity following iron-dependent free-radical damage to amino acids and carbohydrates. FEBS Lett. 1981 Jun 15;128(2):343–346. doi: 10.1016/0014-5793(81)80113-5. [DOI] [PubMed] [Google Scholar]
- Gutteridge J. M., Wilkins S. Copper salt-dependent hydroxyl radical formation. Damage to proteins acting as antioxidants. Biochim Biophys Acta. 1983 Aug 23;759(1-2):38–41. doi: 10.1016/0304-4165(83)90186-1. [DOI] [PubMed] [Google Scholar]
- Halliwell B., Gutteridge J. M. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 1981 Jun 15;128(2):347–352. doi: 10.1016/0014-5793(81)80114-7. [DOI] [PubMed] [Google Scholar]
- Kominami S., Rokusnika S., Hatano H. Studies of spin-trapped radicals in gamma-irradiated aqueous solutions of thymidine-5'-monophosphate and cytidine-5'-monophosphate by liquid chromatography and ESR spectroscopy. Radiat Res. 1977 Oct;72(1):89–99. [PubMed] [Google Scholar]
- Koppenol W. H. The reaction of ferrous EDTA with hydrogen peroxide: evidence against hydroxyl radical formation. J Free Radic Biol Med. 1985;1(4):281–285. doi: 10.1016/0748-5514(85)90132-1. [DOI] [PubMed] [Google Scholar]
- Kuwabara M., Inanami O., Endoh D., Sato F. Spin trapping of precursors of thymine damage in X-irradiated DNA. Biochemistry. 1987 May 5;26(9):2458–2465. doi: 10.1021/bi00383a009. [DOI] [PubMed] [Google Scholar]
- Kuwabara M., Inanami O., Sato F. OH-induced free radicals in purine nucleosides and their homopolymers: e.s.r. and spin-trapping with 2-methyl-2-nitrosopropane. Int J Radiat Biol Relat Stud Phys Chem Med. 1986 May;49(5):829–844. doi: 10.1080/09553008514553031. [DOI] [PubMed] [Google Scholar]
- Kuwabara M., Minegishi A., Ito A., Ito T. A study of aqueous solutions of nucleic acid constituents exposed to monochromatic 160 nm vacuum-UV light by spin-trapping method. Photochem Photobiol. 1986 Sep;44(3):265–272. doi: 10.1111/j.1751-1097.1986.tb04663.x. [DOI] [PubMed] [Google Scholar]
- Kuwabara M., Yoshii G., Itoh T. Reactions of the hydrated electron with pyrimidine nucleosides halogenated at the sugar moiety: e.s.r. and spin-trapping with 2-methyl-2-nitrosopropane. Int J Radiat Biol Relat Stud Phys Chem Med. 1983 Aug;44(2):219–224. doi: 10.1080/09553008314551021. [DOI] [PubMed] [Google Scholar]
- Mansuy D., Chottard J. C., Chottard G. Nitrosoalkanes as Fe(II) ligands in the hemoglobin and myoglobin complexes formed from nitroalkanes in reducing conditions. Eur J Biochem. 1977 Jun 15;76(2):617–623. doi: 10.1111/j.1432-1033.1977.tb11632.x. [DOI] [PubMed] [Google Scholar]
- Mason R. P. Assay of in situ radicals by electron spin resonance. Methods Enzymol. 1984;105:416–422. doi: 10.1016/s0076-6879(84)05058-8. [DOI] [PubMed] [Google Scholar]
- McCord J. M., Day E. D., Jr Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett. 1978 Feb 1;86(1):139–142. doi: 10.1016/0014-5793(78)80116-1. [DOI] [PubMed] [Google Scholar]
- Mello Filho A. C., Meneghini R. In vivo formation of single-strand breaks in DNA by hydrogen peroxide is mediated by the Haber-Weiss reaction. Biochim Biophys Acta. 1984 Feb 24;781(1-2):56–63. doi: 10.1016/0167-4781(84)90123-4. [DOI] [PubMed] [Google Scholar]
- Roots R., Okada S. Protection of DNA molecules of cultured mammalian cells from radiation-induced single-strand scissions by various alcohols and SH compounds. Int J Radiat Biol Relat Stud Phys Chem Med. 1972 Apr;21(4):329–342. doi: 10.1080/09553007214550401. [DOI] [PubMed] [Google Scholar]
- Rush J. D., Koppenol W. H. Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. Reactions with organic molecules and ferrocytochrome c. J Biol Chem. 1986 May 25;261(15):6730–6733. [PubMed] [Google Scholar]
- SCHOLES G., WARD J. F., WEISS J. Mechanism of the radiation-induced degradation of nucleic acids. J Mol Biol. 1960 Dec;2:379–391. doi: 10.1016/s0022-2836(60)80049-6. [DOI] [PubMed] [Google Scholar]
- Samuni A., Chevion M., Czapski G. Unusual copper-induced sensitization of the biological damage due to superoxide radicals. J Biol Chem. 1981 Dec 25;256(24):12632–12635. [PubMed] [Google Scholar]
- Schmidt J., Borg D. C. Free radicals from purine nucleosides after hydroxyl radical attack. Radiat Res. 1976 Feb;65(2):220–237. [PubMed] [Google Scholar]
- Teoule R., Cadet J. Radiation-induced degradation of the base component in DNA and related substances--final products. Mol Biol Biochem Biophys. 1978;27:171–203. doi: 10.1007/978-3-642-81196-8_9. [DOI] [PubMed] [Google Scholar]
- Winterbourn C. C. The ability of scavengers to distinguish OH. production in the iron-catalyzed Haber-Weiss reaction: comparison of four assays for OH. Free Radic Biol Med. 1987;3(1):33–39. doi: 10.1016/0891-5849(87)90037-2. [DOI] [PubMed] [Google Scholar]
- Youngman R. J., Elstner E. F. Oxygen species in paraquat toxicity: the crypto-OH radical. FEBS Lett. 1981 Jul 6;129(2):265–268. doi: 10.1016/0014-5793(81)80180-9. [DOI] [PubMed] [Google Scholar]
