Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Aug 1;261(3):853–861. doi: 10.1042/bj2610853

Purification and catalytic properties of L-valine dehydrogenase from Streptomyces cinnamonensis.

N D Priestley 1, J A Robinson 1
PMCID: PMC1138909  PMID: 2803248

Abstract

NAD+-dependent L-valine dehydrogenase was purified 180-fold from Streptomyces cinnamonensis, and to homogeneity, as judged by gel electrophoresis. The enzyme has an Mr of 88,000, and appears to be composed of subunits of Mr 41,200. The enzyme catalyses the oxidative deamination of L-valine, L-leucine, L-2-aminobutyric acid, L-norvaline and L-isoleucine, as well as the reductive amination of their 2-oxo analogues. The enzyme requires NAD+ as the only cofactor, which cannot be replaced by NADP+. The enzyme activity is significantly decreased by thiol-reactive reagents, although purine and pyrimidine bases, and nucleotides, do not affect activity. Initial-velocity and product-inhibition studies show that the reductive amination proceeds through a sequential ordered ternary-binary mechanism; NADH binds to the enzyme first, followed by 2-oxoisovalerate and NH3, and valine is released first, followed by NAD+. The Michaelis constants are as follows; L-valine, 1.3 mM; NAD+, 0.18 mM; NADH, 74 microM; 2-oxoisovalerate, 0.81 mM; and NH3, 55 mM. The pro-S hydrogen at C-4' of NADH is transferred to the substrate; the enzyme is B-stereospecific. It is proposed that the enzyme catalyses the first step of valine catabolism in this organism.

Full text

PDF
853

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold L. J., Jr, You K. The hydride transfer stereospecificity of nicotinamide adenine dinucleotide linked enzymes: a proton magnetic resonance technique. Methods Enzymol. 1978;54:223–232. doi: 10.1016/s0076-6879(78)54017-2. [DOI] [PubMed] [Google Scholar]
  2. Asano Y., Nakazawa A., Endo K., Hibino Y., Ohmori M., Numao N., Kondo K. Phenylalanine dehydrogenase of Bacillus badius. Purification, characterization and gene cloning. Eur J Biochem. 1987 Oct 1;168(1):153–159. doi: 10.1111/j.1432-1033.1987.tb13399.x. [DOI] [PubMed] [Google Scholar]
  3. Asano Y., Nakazawa A., Endo K. Novel phenylalanine dehydrogenases from Sporosarcina ureae and Bacillus sphaericus. Purification and characterization. J Biol Chem. 1987 Jul 25;262(21):10346–10354. [PubMed] [Google Scholar]
  4. Bellion E., Tan F. An NAD+-dependent alanine dehydrogenase from a methylotrophic bacterium. Biochem J. 1987 Jun 15;244(3):565–570. doi: 10.1042/bj2440565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
  7. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: nomenclature and theory. Biochim Biophys Acta. 1963 Feb 12;67:173–187. doi: 10.1016/0006-3002(63)91815-8. [DOI] [PubMed] [Google Scholar]
  8. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection. Biochim Biophys Acta. 1963 Feb 12;67:188–196. doi: 10.1016/0006-3002(63)91816-x. [DOI] [PubMed] [Google Scholar]
  9. Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
  10. Engel P. C., Dalziel K. Kinetic studies of glutamate dehydrogenase. The reductive amination of 2-oxoglutarate. Biochem J. 1970 Jul;118(3):409–419. doi: 10.1042/bj1180409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glasfeld A., Farber G. K., Ringe D., Marcel T., Drocourt D., Tiraby G., Petsko G. A. Characterization of crystals of xylose isomerase from Streptomyces violaceoniger. J Biol Chem. 1988 Oct 15;263(29):14612–14613. [PubMed] [Google Scholar]
  12. Hunaiti A. A., Kolattukudy P. E. Source of methylmalonyl-coenzyme A for erythromycin synthesis: methylmalonyl-coenzyme A mutase from Streptomyces erythreus. Antimicrob Agents Chemother. 1984 Feb;25(2):173–178. doi: 10.1128/aac.25.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Massey L. K., Sokatch J. R., Conrad R. S. Branched-chain amino acid catabolism in bacteria. Bacteriol Rev. 1976 Mar;40(1):42–54. doi: 10.1128/br.40.1.42-54.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  16. Misono H., Soda K. Properties of meso-alpha,epsilon-diaminopimelate D-dehydrogenase from Bacillus sphaericus. J Biol Chem. 1980 Nov 25;255(22):10599–10605. [PubMed] [Google Scholar]
  17. Ohashima T., Soda K. Purification and properties of alanine dehydrogenase from Bacillus sphaericus. Eur J Biochem. 1979 Oct;100(1):29–30. doi: 10.1111/j.1432-1033.1979.tb02030.x. [DOI] [PubMed] [Google Scholar]
  18. Ohshima T., Misono H., Soda K. Properties of crystalline leucine dehydrogenase from Bacillus sphaericus. J Biol Chem. 1978 Aug 25;253(16):5719–5725. [PubMed] [Google Scholar]
  19. Omura S., Tanaka Y., Mamada H., Masuma R. Ammonium ion suppresses the biosynthesis of tylosin aglycone by interference with valine catabolism in Streptomyces fradiae. J Antibiot (Tokyo) 1983 Dec;36(12):1792–1794. doi: 10.7164/antibiotics.36.1792. [DOI] [PubMed] [Google Scholar]
  20. Omura S., Tanaka Y., Mamada H., Masuma R. Effect of ammonium ion, inorganic phosphate and amino acids on the biosynthesis of protylonolide, a precursor of tylosin aglycone. J Antibiot (Tokyo) 1984 May;37(5):494–502. doi: 10.7164/antibiotics.37.494. [DOI] [PubMed] [Google Scholar]
  21. Omura S., Tsuzuki K., Tanaka Y., Sakakibara H., Aizawa M., Lukacs G. Valine as a precursor of n-butyrate unit in the biosynthesis of macrolide aglycone. J Antibiot (Tokyo) 1983 May;36(5):614–616. doi: 10.7164/antibiotics.36.614. [DOI] [PubMed] [Google Scholar]
  22. Porumb H., Vancea D., Mureşan L., Presecan E., Lascu I., Petrescu I., Porumb T., Pop R., Bârzu O. Structural and catalytic properties of L-alanine dehydrogenase from Bacillus cereus. J Biol Chem. 1987 Apr 5;262(10):4610–4615. [PubMed] [Google Scholar]
  23. Pospísil S., Sedmera P., Havránek M., Krumphanzl V., Vanek Z. Biosynthesis of monensins A and B. J Antibiot (Tokyo) 1983 May;36(5):617–619. doi: 10.7164/antibiotics.36.617. [DOI] [PubMed] [Google Scholar]
  24. Rife J. E., Cleland W. W. Determination of the chemical mechanism of glutamate dehydrogenase from pH studies. Biochemistry. 1980 May 27;19(11):2328–2333. doi: 10.1021/bi00552a008. [DOI] [PubMed] [Google Scholar]
  25. Shiio I., Ozaki H. Regulation of nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase from Brevibacterium flavum, a glutamate-producing bacterium. J Biochem. 1970 Nov;68(5):633–647. doi: 10.1093/oxfordjournals.jbchem.a129397. [DOI] [PubMed] [Google Scholar]
  26. Stevenson R. M., LéJohn H. B. Glutamic dehydrogenases of Oomycetes. Kinetic mechanism and possible vvolutionary history. J Biol Chem. 1971 Apr 10;246(7):2127–2135. [PubMed] [Google Scholar]
  27. Van Laere A. J. Purification and properties of NAD-dependent glutamate dehydrogenase from Phycomyces spores. J Gen Microbiol. 1988 Jun;134(6):1597–1601. doi: 10.1099/00221287-134-6-1597. [DOI] [PubMed] [Google Scholar]
  28. Vancura A., Vancurová I., Volc J., Fussey S. P., Flieger M., Neuzil J., Marsálek J., Behal V. Valine dehydrogenase from Streptomyces fradiae: purification and properties. J Gen Microbiol. 1988 Dec;134(12):3213–3219. doi: 10.1099/00221287-134-12-3213. [DOI] [PubMed] [Google Scholar]
  29. Vancurová I., Vancura A., Volc J., Neuzil J., Flieger M., Basarová G., Behal V. Isolation and characterization of valine dehydrogenase from Streptomyces aureofaciens. J Bacteriol. 1988 Nov;170(11):5192–5196. doi: 10.1128/jb.170.11.5192-5196.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES