Abstract
Amino groups in human albumin are modified in vivo by glucose in a non-enzymic reaction, and previous studies have implicated lysine residues as exclusive participants. An investigation using g.c.-m.s. was undertaken to ascertain whether or not the N-terminus was also involved. Appropriate model compounds [N-(1-deoxyglucitol-1-yl) and N-(1-deoxymannitol-1-yl) adducts of aspartic acid] were synthesized and the diagnostic fragment ions of suitable derivatives were established under electron-impact and negative-chemical-ionization conditions. Characteristic fragment ions were identical with those obtained from the model compounds in the mass spectra of derivatives prepared from hydrolysates of reduced albumin. A purified mixture of the model compounds was also obtained from such hydrolysates. Use of radioisotopic incorporation demonstrated that the relative extent of glycation of the epsilon-amino and alpha-amino groups in albumin was approx. 8:1. N-1-Deoxyhexitol adducts of aspartic acid were also identified in reduced and hydrolysed peptides of human urine.
Full text
PDF![871](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/1138911/10430db32368/biochemj00202-0182.png)
![872](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/1138911/96e72b0e102f/biochemj00202-0183.png)
![873](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/1138911/2d841c06ad16/biochemj00202-0184.png)
![874](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/1138911/88efee000022/biochemj00202-0185.png)
![875](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/1138911/a3355a695ce8/biochemj00202-0186.png)
![876](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/1138911/48378f618843/biochemj00202-0187.png)
![877](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/1138911/1b74abc9320e/biochemj00202-0188.png)
![878](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dfa/1138911/c048c30fa904/biochemj00202-0189.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed M. U., Thorpe S. R., Baynes J. W. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem. 1986 Apr 15;261(11):4889–4894. [PubMed] [Google Scholar]
- Bailey A. J., Robins S. P., Tanner M. J. Reducible components in the proteins of human erythrocyte membrane. Biochim Biophys Acta. 1976 May 20;434(1):51–57. doi: 10.1016/0005-2795(76)90034-9. [DOI] [PubMed] [Google Scholar]
- Baynes J. W., Thorpe S. R., Murtiashaw M. H. Nonenzymatic glucosylation of lysine residues in albumin. Methods Enzymol. 1984;106:88–98. doi: 10.1016/0076-6879(84)06010-9. [DOI] [PubMed] [Google Scholar]
- Bookchin R. M., Gallop P. M. Structure of hemoglobin AIc: nature of the N-terminal beta chain blocking group. Biochem Biophys Res Commun. 1968 Jul 11;32(1):86–93. doi: 10.1016/0006-291x(68)90430-0. [DOI] [PubMed] [Google Scholar]
- Brownlee M., Cerami A., Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988 May 19;318(20):1315–1321. doi: 10.1056/NEJM198805193182007. [DOI] [PubMed] [Google Scholar]
- Brownlee M., Vlassara H., Cerami A. Measurement of glycosylated amino acids and peptides from urine of diabetic patients using affinity chromatography. Diabetes. 1980 Dec;29(12):1044–1047. doi: 10.2337/diab.29.12.1044. [DOI] [PubMed] [Google Scholar]
- Garlick R. L., Mazer J. S. The principal site of nonenzymatic glycosylation of human serum albumin in vivo. J Biol Chem. 1983 May 25;258(10):6142–6146. [PubMed] [Google Scholar]
- Garner M. H., Bogardt R. A., Jr, Gurd F. R. Determination of the pK values for the alpha-amino groups of human hemoglobin. J Biol Chem. 1975 Jun 25;250(12):4398–4404. [PubMed] [Google Scholar]
- Gundberg C. M., Anderson M., Dickson I., Gallop P. M. "Glycated" osteocalcin in human and bovine bone. The effect of age. J Biol Chem. 1986 Nov 5;261(31):14557–14561. [PubMed] [Google Scholar]
- Iberg N., Flückiger R. Nonenzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites. J Biol Chem. 1986 Oct 15;261(29):13542–13545. [PubMed] [Google Scholar]
- Kesaniemi Y. A., Witztum J. L., Steinbrecher U. P. Receptor-mediated catabolism of low density lipoprotein in man. Quantitation using glucosylated low density lipoprotein. J Clin Invest. 1983 Apr;71(4):950–959. doi: 10.1172/JCI110849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayer T. K., Freedman Z. R. Protein glycosylation in diabetes mellitus: a review of laboratory measurements and of their clinical utility. Clin Chim Acta. 1983 Jan 24;127(2):147–184. doi: 10.1016/s0009-8981(83)80002-3. [DOI] [PubMed] [Google Scholar]
- Mori N., Manning J. M. Studies on the Amadori rearrangement in a model system: chromatographic isolation of intermediates and product. Anal Biochem. 1986 Feb 1;152(2):396–401. doi: 10.1016/0003-2697(86)90426-4. [DOI] [PubMed] [Google Scholar]
- Olufemi S., Talwar D., Robb D. A. The relative extent of glycation of haemoglobin and albumin. Clin Chim Acta. 1987 Mar 16;163(2):125–136. doi: 10.1016/0009-8981(87)90014-3. [DOI] [PubMed] [Google Scholar]
- Robins S. P. Analysis of the crosslinking components in collagen and elastin. Methods Biochem Anal. 1982;28:329–379. doi: 10.1002/9780470110485.ch8. [DOI] [PubMed] [Google Scholar]
- Robins S. P., Bailey A. J. Age-related changes in collagen: the identification of reducible lysine-carbohydrate condensation products. Biochem Biophys Res Commun. 1972 Jul 11;48(1):76–84. doi: 10.1016/0006-291x(72)90346-4. [DOI] [PubMed] [Google Scholar]
- Rucklidge G. J., Bates G. P., Robins S. P. Preparation and analysis of the products of non-enzymatic protein glycosylation and their relationship to cross-linking of proteins. Biochim Biophys Acta. 1983 Sep 14;747(1-2):165–170. doi: 10.1016/0167-4838(83)90135-8. [DOI] [PubMed] [Google Scholar]
- Schwartz B. A., Gray G. R. Proteins containing reductively aminated disaccharides. Synthesis and chemical characterization. Arch Biochem Biophys. 1977 Jun;181(2):542–549. doi: 10.1016/0003-9861(77)90261-2. [DOI] [PubMed] [Google Scholar]
- Shapiro R., McManus M. J., Zalut C., Bunn H. F. Sites of nonenzymatic glycosylation of human hemoglobin A. J Biol Chem. 1980 Apr 10;255(7):3120–3127. [PubMed] [Google Scholar]
- Trüeb B., Hughes G. J., Winterhalter K. H. Synthesis and quantitation of glucitollysine, a glycosylated amino acid elevated in proteins from diabetics. Anal Biochem. 1982 Jan 15;119(2):330–334. doi: 10.1016/0003-2697(82)90594-2. [DOI] [PubMed] [Google Scholar]
- Walton D. J., Ison E. R., Szarek W. A. Synthesis of N-(1-deoxyhexitol-1-yl)amino acids, reference compounds for the nonenzymic glycosylation of proteins. Carbohydr Res. 1984 May 15;128(1):37–49. doi: 10.1016/0008-6215(84)85082-x. [DOI] [PubMed] [Google Scholar]
- Wolff S. P., Dean R. T. Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes. Biochem J. 1987 Jul 1;245(1):243–250. doi: 10.1042/bj2450243. [DOI] [PMC free article] [PubMed] [Google Scholar]