Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Aug 30;80(Pt 9):993–996. doi: 10.1107/S2056989024008478

Crystal structure of a tris(2-amino­eth­yl)methane capped carbamoyl­methyl­phosphine oxide compound

Brandon G Wackerle a, Eric J Werner b, Richard J Staples c, Shannon M Biros a,*
Editor: F Di Salvod
PMCID: PMC11389668  PMID: 39267878

The crystal structure of the compound described here features both C—H⋯O and N—H⋯O intra­molecular hydrogen bonds, as well as a myriad of inter­molecular C—H⋯O hydrogen-bonding inter­actions.

Keywords: crystal structure, carbamoyl­methyl­phosphine oxide, intra­molecular hydrogen bond, inter­molecular hydrogen bond

Abstract

The mol­ecular structure of the tripodal carbamoyl­methyl­phosphine oxide compound diethyl {[(5-[2-(di­eth­oxy­phosphor­yl)acetamido]-3-{2-[2-(di­eth­oxy­phos­phor­yl)acetamido]­eth­yl}pent­yl)carbamo­yl]meth­yl}phospho­nate, C25H52N3O12P3, features six intra­molecular hydrogen-bonding inter­actions. The phospho­nate groups have key bond lengths ranging from 1.4696 (12) to 1.4729 (12) Å (P=O), 1.5681 (11) to 1.5811 (12) Å (P—O) and 1.7881 (16) to 1.7936 (16) Å (P—C). Each amide group adopts a nearly perfect trans geometry, and the geometry around each phophorus atom resembles a slightly distorted tetra­hedron.

1. Chemical context

The carbamoyl­methyl­phosphine oxide (CMPO) group (Fig. 1) has been utilized by researchers in the area of f-element coordination chemistry to prepare compounds with an affinity for lanthanide and actinide metals. Perhaps the most well known use of this metal chelator is as part of the TRUEX (transuranium extraction) process for the remediation of spent nuclear fuel (Horwitz et al., 1985). Various research groups have studied the coordination complexes of CMPO-containing compounds with f-elements and found that, depending on the identity of the metal, two to three CMPO groups are able to coordinate to the metal center simultaneously (Horwitz et al., 1987). Based on these results, research groups have used a variety of di-, tri- and tetra­podal scaffolds to tether multiple CMPO groups together with the aim of preparing chelators for f-elements that have stronger binding affinities and higher extraction selectivities than their monomeric counterparts (Dam et al., 2007; Leoncini et al., 2017; Werner & Biros, 2019). To this end, we have prepared a tripodal CMPO compound based on a tris(2-amino­eth­yl)methane scaffold and report here its characterization by X-ray diffraction and NMR spectroscopy.1.

Figure 1.

Figure 1

The general structure of the CMPO motif, along with the structure of the CMPO compound used in the TRUEX process.

2. Structural commentary

The mol­ecular structure of compound I is shown in Fig. 2 along with the atom-numbering scheme. The electron density corresponding to the capping carbon atoms C2, C3 and C4 was disordered and was modeled over two positions with a 0.676 (3):0.324 (3) occupancy ratio (see the Refinement section for more details). The three CMPO arms are oriented on the same side of the mol­ecule, and each phopshonate group is engaged in intra­molecular hydrogen bonds with a neighboring amide group (vide infra). For the phospho­nate groups, the three P=O bond lengths have values of 1.4696 (12), 1.4722 (12) and 1.4729 (12) Å. The longer P—O bond lengths range from 1.5681 (11) to 1.5811 (12) Å with P—C bond lengths ranging from 1.7881 (16) to 1.7936 (16) Å. Each phospho­rus atom has a τ4 descriptor of fourfold coordination of 0.92 (where 0.00 = square planar, 0.85 = trigonal pyramidal, and 1.00 = tetra­hedral; Yang et al., 2007), indicating that the geometry around these atoms resembles a slightly distorted tetra­hedron. The C=O bond lengths of the amide groups are nearly identical with values of 1.231 (2), 1.231 (2) and 1.230 (2) Å. The C(O)—N bond lengths range from 1.335 (2) to 1.344 (2) Å, and each amide group adopts a nearly perfect trans geometry with H—N—C—O torsion angles of 176.9 (19), 177.9 (18) and 179.0 (16)°.

Figure 2.

Figure 2

The mol­ecular structure of compound I, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level, and hydrogen atoms bonded to carbon atoms have been omitted for clarity. With regard to the disordered atoms, only the major component is shown.

Intra­molecular N—H⋯O and C—H⋯O hydrogen bonds are present in the crystal of compound I between each of the P=O oxygen atoms and a neighboring amide group (Fig. 3 and Table 1). These inter­actions have an average DA distance of 2.886 Å and an average D—H⋯A angle of 169° for the N—H⋯O inter­actions, and an average DA distance of 3.250 Å and an average D—H⋯A angle of 148° for the C—H⋯O inter­actions.

Figure 3.

Figure 3

Depictions of the intra­molecular C—H⋯O and N—H⋯O hydrogen bonds (green, dashed lines) present in the crystal of compound I using a ball-and-stick model with standard CPK colors. With regard to the disordered atoms, only the major component is shown.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6 0.86 (2) 2.07 (2) 2.9138 (18) 168.8 (19)
N2—H2⋯O4 0.79 (2) 2.06 (2) 2.8465 (18) 170 (2)
N3—H3⋯O5 0.82 (2) 2.10 (2) 2.8975 (19) 167 (2)
C11—H11A⋯O6 0.99 2.36 3.2433 (19) 148
C11—H11B⋯O6i 0.99 2.48 3.3235 (19) 143
C12—H12A⋯O4 0.99 2.37 3.2476 (19) 148
C12—H12B⋯O2ii 0.99 2.35 3.321 (2) 168
C13—H13A⋯O5 0.99 2.37 3.259 (2) 149
C14—H14A⋯O1 0.99 2.56 3.326 (2) 135
C17—H17B⋯O3iii 0.98 2.65 3.427 (3) 137
C18—H18A⋯O2 0.99 2.57 3.215 (2) 122
C22—H22B⋯O1i 0.99 2.80 3.472 (2) 126
C23—H23C⋯O3 0.98 2.69 3.460 (2) 135
C24—H24A⋯O1i 0.99 2.55 3.480 (2) 156
C24—H24B⋯O8 0.99 2.57 3.444 (2) 147
C4A—H4AA⋯O2iv 0.99 2.39 3.241 (5) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

3. Supra­molecular features

In the crystal, mol­ecules of the title compound form supra­molecular sheets that bis­ect the y- and z-axes. These sheets are held together by C—H⋯O hydrogen bonds (Table 1). Additional C—H⋯O hydrogen bonds are found between the supra­molecular sheets.

4. Database survey

A search of the Cambridge Structure Database (CSD version 5.44 with updates through June 2024; Groom et al., 2016) for structures containing the general CMPO motif returned 104 hits, 63 of which were exclusively organic compounds. Of these 63 compounds, 14 structures contained the CMPO moiety tethered to a di-, tri- or tetra­podal scaffold. Structures CIWFAR (Ouizem et al., 2014) and GOGZAG (VanderWeide et al., 2019) contain aromatic rings decorated with two CMPO groups. Structures containing three CMPO groups tethered together can be found in entries IMIDEP (Coburn et al., 2016), XILJOR (Peters et al., 2002), JIVSUD and JIVTAK (Matloka et al., 2007). Lastly, a calix[4]arene scaffold was used to link four CMPO groups together in structures OLUWEX (Schmidt et al., 2003), CUVNEN and CUVNIR (Rudzevich et al., 2010).

5. Synthesis and crystallization

A 25 mL round-bottom flask was charged with 1.15 g (7.90 mmol) of freshly distilled 1,1,1-tris(2-amino­eth­yl)methane (Archer et al., 2004) and 1.0 mL of methanol. Under an atmosphere of nitro­gen, the solution was cooled to ca. 230 K with a liquid N2/EtOAc bath. Tri­ethyl­phosphono­acetate (6.50 mL, 32.8 mmol) was added slowly to the flask via syringe, and the reaction was allowed to warm to room temperature. The reaction was stirred under an inert atmosphere for 3 days, and the volatiles were removed under reduced pressure. The crude product was purified via silica gel column chromatography (5–10% MeOH/CH2Cl2 gradient) to give compound I as a slightly yellow, waxy solid (typical yield = 50–60%, Rf in 10% MeOH/CH2Cl2 = 0.4). Crystals suitable for analysis by X-ray diffraction were grown serendipitously from a concentrated solution of compound I in methanol upon standing in the refrigerator for many months. NMR data was acquired with a JEOL ECZS 400 NMR spectrometer: 1H NMR (400 MHz, CDCl3) δ 8.24 (broad, 3H), 4.10 (m, 12 H), 3.22 (m, 6H), 2.95 (d, JP–H = 21.6 Hz, 6H), 1.68 (septet, J = 6.8 Hz, 3H), 1.40 (dt, J = 6.3, 13.7 Hz, 6H), 1.29 (t, J = 7.1 Hz, 18H); 13C NMR (100 MHz, CDCl3) δ 164.8 (d, JC–P = 5.2 Hz), 62.5 (d, JC-P = 6.4 Hz), 36.3 (s), 35.0 (d, JC–P = 132 Hz), 31.8 (s), 25.2 (s), 16.4 (d, JC–P = 6.3 Hz); 31P NMR (161 MHz, CDCl3) δ 24.4.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C) for methyl­ene and methine groups, and Uiso(H) = 1.5Ueq(C) for methyl groups. Hydrogen atoms bonded to nitro­gen atoms were located using electron-density difference maps. The disordered electron density corresponding to C2/C2A, C3/C3A and C4/C4A was modeled over two positions and refined against a free variable to give a relative occupancy ratio of 0.676 (3):0.324 (3). This disorder reverberated to the nearby carbon atoms C5, C6 and C7 to give two orientations of the attached hydrogen atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C25H52N3O12P3
M r 679.60
Crystal system, space group Triclinic, PInline graphic
Temperature (K) 100
a, b, c (Å) 10.02487 (11), 11.92992 (15), 16.6237 (2)
α, β, γ (°) 100.4792 (11), 100.124 (1), 111.1313 (11)
V3) 1759.25 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.06
Crystal size (mm) 0.16 × 0.09 × 0.04
 
Data collection
Diffractometer XtaLAB Synergy-S, Dualflex, HyPix-6000HE
Absorption correction Gaussian (CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax 0.700, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 27502, 7504, 6481
R int 0.043
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.07
No. of reflections 7504
No. of parameters 438
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.35

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXT (Sheldrick, 2015a), SHELXL2019/2 (Sheldrick, 2015b), CrystalMaker (Palmer, 2007) and OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024008478/vu2007sup1.cif

e-80-00993-sup1.cif (932.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024008478/vu2007Isup3.hkl

e-80-00993-Isup3.hkl (596KB, hkl)
e-80-00993-Isup3.cml (5.9KB, cml)

Supporting information file. DOI: 10.1107/S2056989024008478/vu2007Isup3.cml

CCDC reference: 2379899

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to GVSU (Chemistry department Weldon Fund, CSCE) for financial support of this research, as well as Dr Randy Winchester (GVSU) for helpful conversations. We also thank GVSU’s Office of Undergraduate Research for a Student Supplies Grant to B. Wackerle.

supplementary crystallographic information

Diethyl {[(5-[2-(diethoxyphosphoryl)acetamido]-3-{2-[2-(diethoxyphosphoryl)acetamido]ethyl}pentyl)carbamoyl]methyl}phosphonate. Crystal data

C25H52N3O12P3 Z = 2
Mr = 679.60 F(000) = 728
Triclinic, P1 Dx = 1.283 Mg m3
a = 10.02487 (11) Å Cu Kα radiation, λ = 1.54184 Å
b = 11.92992 (15) Å Cell parameters from 13811 reflections
c = 16.6237 (2) Å θ = 4.1–79.9°
α = 100.4792 (11)° µ = 2.06 mm1
β = 100.124 (1)° T = 100 K
γ = 111.1313 (11)° Irregular, colourless
V = 1759.25 (4) Å3 0.16 × 0.09 × 0.04 mm

Diethyl {[(5-[2-(diethoxyphosphoryl)acetamido]-3-{2-[2-(diethoxyphosphoryl)acetamido]ethyl}pentyl)carbamoyl]methyl}phosphonate. Data collection

XtaLAB Synergy-S, Dualflex, HyPix-6000HE diffractometer 6481 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1 Rint = 0.043
ω scans θmax = 80.2°, θmin = 2.8°
Absorption correction: gaussian (CrysAlisPro; Oxford Diffraction, 2006) h = −12→12
Tmin = 0.700, Tmax = 1.000 k = −15→14
27502 measured reflections l = −20→21
7504 independent reflections

Diethyl {[(5-[2-(diethoxyphosphoryl)acetamido]-3-{2-[2-(diethoxyphosphoryl)acetamido]ethyl}pentyl)carbamoyl]methyl}phosphonate. Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: mixed
wR(F2) = 0.099 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.5632P] where P = (Fo2 + 2Fc2)/3
7504 reflections (Δ/σ)max = 0.001
438 parameters Δρmax = 0.61 e Å3
0 restraints Δρmin = −0.34 e Å3

Diethyl {[(5-[2-(diethoxyphosphoryl)acetamido]-3-{2-[2-(diethoxyphosphoryl)acetamido]ethyl}pentyl)carbamoyl]methyl}phosphonate. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Diethyl {[(5-[2-(diethoxyphosphoryl)acetamido]-3-{2-[2-(diethoxyphosphoryl)acetamido]ethyl}pentyl)carbamoyl]methyl}phosphonate. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
P1 0.35890 (4) 0.68848 (4) 0.12527 (2) 0.02154 (10)
P2 0.53282 (4) 0.38100 (4) 0.20227 (2) 0.02071 (9)
P3 0.47290 (4) 0.71266 (4) 0.45959 (2) 0.02314 (10)
O1 0.62953 (12) 0.82490 (11) 0.04850 (8) 0.0286 (2)
O2 0.69588 (13) 0.99779 (11) 0.49775 (7) 0.0314 (3)
O3 0.86359 (13) 0.48663 (12) 0.29651 (8) 0.0336 (3)
O4 0.45143 (13) 0.75898 (12) 0.21164 (7) 0.0310 (3)
O5 0.58783 (13) 0.66867 (11) 0.44337 (8) 0.0304 (3)
O6 0.59114 (12) 0.46394 (10) 0.14955 (7) 0.0261 (2)
O7 0.28427 (12) 0.76460 (10) 0.07967 (8) 0.0283 (2)
O8 0.22248 (12) 0.56567 (11) 0.11756 (8) 0.0276 (2)
O9 0.48562 (12) 0.75646 (11) 0.55729 (7) 0.0274 (2)
O10 0.30802 (13) 0.61449 (11) 0.42340 (8) 0.0299 (3)
O11 0.53576 (12) 0.24858 (10) 0.17424 (7) 0.0249 (2)
O12 0.36511 (12) 0.34604 (11) 0.20133 (7) 0.0267 (2)
N1 0.71852 (14) 0.70410 (14) 0.11270 (9) 0.0242 (3)
H1 0.693 (2) 0.636 (2) 0.1277 (13) 0.025 (5)*
N2 0.66717 (15) 0.94335 (13) 0.35606 (9) 0.0248 (3)
H2 0.614 (2) 0.896 (2) 0.3124 (15) 0.030 (5)*
N3 0.82763 (15) 0.64181 (13) 0.37830 (9) 0.0250 (3)
H3 0.766 (2) 0.661 (2) 0.3961 (14) 0.029 (5)*
C1 0.89282 (17) 0.85561 (16) 0.29672 (10) 0.0270 (3)
H1A 0.791 (2) 0.7973 (18) 0.2865 (13) 0.025 (5)*
C5 0.87290 (17) 0.79247 (17) 0.13561 (11) 0.0296 (3)
H5AA 0.893030 0.827828 0.087376 0.036* 0.676 (3)
H5AB 0.937439 0.747536 0.145957 0.036* 0.676 (3)
H5BC 0.878553 0.876708 0.134409 0.036* 0.324 (3)
H5BD 0.924175 0.767149 0.094618 0.036* 0.324 (3)
C6 0.81521 (18) 1.02970 (15) 0.35924 (11) 0.0282 (3)
H6AA 0.846342 1.105489 0.406285 0.034* 0.676 (3)
H6AB 0.812996 1.055031 0.305686 0.034* 0.676 (3)
H6BC 0.882153 1.049504 0.416062 0.034* 0.324 (3)
H6BD 0.811939 1.108309 0.349705 0.034* 0.324 (3)
C7 0.97830 (17) 0.73567 (16) 0.39527 (11) 0.0287 (3)
H7AA 1.049062 0.696112 0.404807 0.034* 0.676 (3)
H7AB 0.999863 0.800928 0.447785 0.034* 0.676 (3)
H7BC 1.030570 0.707191 0.356172 0.034* 0.324 (3)
H7BD 1.034145 0.749897 0.454197 0.034* 0.324 (3)
C8 0.60896 (16) 0.72964 (15) 0.07237 (9) 0.0223 (3)
C9 0.62078 (18) 0.93312 (14) 0.42602 (10) 0.0243 (3)
C10 0.78257 (17) 0.52657 (15) 0.32878 (10) 0.0249 (3)
C11 0.45376 (16) 0.63076 (14) 0.05793 (10) 0.0223 (3)
H11A 0.459884 0.554470 0.070441 0.027*
H11B 0.398214 0.608946 −0.002128 0.027*
C12 0.46608 (17) 0.83407 (15) 0.41182 (10) 0.0249 (3)
H12A 0.419042 0.798180 0.350200 0.030*
H12B 0.404881 0.872627 0.436542 0.030*
C13 0.61943 (17) 0.44487 (15) 0.31384 (10) 0.0258 (3)
H13A 0.569838 0.494936 0.339364 0.031*
H13B 0.609095 0.376363 0.341386 0.031*
C14 0.36017 (19) 0.89977 (15) 0.09918 (12) 0.0308 (4)
H14A 0.447502 0.922709 0.075691 0.037*
H14B 0.394467 0.936564 0.161344 0.037*
C15 0.2526 (2) 0.94742 (19) 0.06022 (16) 0.0436 (5)
H15A 0.217905 0.909149 −0.001106 0.065*
H15B 0.301497 1.038212 0.071238 0.065*
H15C 0.167935 0.926141 0.085007 0.065*
C16 0.1174 (2) 0.56953 (19) 0.16770 (12) 0.0359 (4)
H16A 0.136218 0.657160 0.193669 0.043*
H16B 0.129442 0.528868 0.213731 0.043*
C17 −0.0359 (2) 0.5030 (2) 0.11089 (15) 0.0528 (6)
H17A −0.046762 0.543631 0.065403 0.079*
H17B −0.107391 0.505756 0.143687 0.079*
H17C −0.054202 0.416041 0.086221 0.079*
C18 0.62943 (17) 0.81483 (17) 0.61951 (10) 0.0287 (3)
H18A 0.708701 0.850973 0.591946 0.034*
H18B 0.650082 0.752204 0.645208 0.034*
C19 0.6248 (2) 0.91549 (17) 0.68647 (12) 0.0343 (4)
H19A 0.612075 0.980235 0.661174 0.051*
H19B 0.717792 0.952208 0.731421 0.051*
H19C 0.541637 0.879707 0.710529 0.051*
C20 0.2548 (2) 0.5026 (2) 0.45184 (15) 0.0457 (5)
H20A 0.209606 0.517026 0.498961 0.055*
H20B 0.338692 0.481182 0.472970 0.055*
C21 0.1447 (3) 0.3995 (2) 0.38158 (18) 0.0587 (7)
H21A 0.191132 0.382672 0.336272 0.088*
H21B 0.063215 0.422058 0.359740 0.088*
H21C 0.105937 0.324849 0.401657 0.088*
C22 0.64205 (19) 0.22577 (17) 0.13194 (11) 0.0291 (3)
H22A 0.708598 0.304258 0.122922 0.035*
H22B 0.589477 0.164576 0.075948 0.035*
C23 0.7309 (2) 0.17610 (18) 0.18627 (13) 0.0364 (4)
H23A 0.797129 0.153545 0.156173 0.055*
H23B 0.663732 0.102142 0.198646 0.055*
H23C 0.789814 0.240173 0.239481 0.055*
C24 0.25179 (18) 0.28757 (16) 0.12104 (11) 0.0298 (3)
H24A 0.282073 0.234942 0.081284 0.036*
H24B 0.237004 0.352005 0.095038 0.036*
C25 0.1120 (2) 0.2097 (3) 0.13888 (17) 0.0668 (8)
H25A 0.032790 0.170273 0.085977 0.100*
H25B 0.084140 0.262460 0.179047 0.100*
H25C 0.127335 0.145065 0.163357 0.100*
C2 0.9138 (3) 0.9024 (2) 0.21687 (16) 0.0273 (5) 0.676 (3)
H2A 1.018299 0.961080 0.227461 0.033* 0.676 (3)
H2B 0.850660 0.948454 0.206276 0.033* 0.676 (3)
C3 0.9259 (3) 0.9732 (2) 0.37186 (16) 0.0286 (6) 0.676 (3)
H3A 0.927444 0.947845 0.425396 0.034* 0.676 (3)
H3B 1.025648 1.037297 0.377840 0.034* 0.676 (3)
C4 1.0018 (2) 0.7972 (2) 0.32176 (16) 0.0276 (6) 0.676 (3)
H4A 1.103868 0.862754 0.338242 0.033* 0.676 (3)
H4B 0.993196 0.733465 0.271490 0.033* 0.676 (3)
C2A 0.9477 (5) 0.7944 (5) 0.2254 (3) 0.0269 (11) 0.324 (3)
H2AA 1.056167 0.840578 0.236832 0.032* 0.324 (3)
H2AB 0.928389 0.707658 0.227536 0.032* 0.324 (3)
C3A 0.8789 (5) 0.9696 (5) 0.2877 (3) 0.0263 (11) 0.324 (3)
H3AA 0.812478 0.952468 0.231216 0.032* 0.324 (3)
H3AB 0.977608 1.031831 0.289758 0.032* 0.324 (3)
C4A 0.9682 (6) 0.8531 (5) 0.3825 (3) 0.0292 (12) 0.324 (3)
H4AA 1.070549 0.918112 0.398768 0.035* 0.324 (3)
H4AB 0.916861 0.878735 0.423347 0.035* 0.324 (3)

Diethyl {[(5-[2-(diethoxyphosphoryl)acetamido]-3-{2-[2-(diethoxyphosphoryl)acetamido]ethyl}pentyl)carbamoyl]methyl}phosphonate. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.01846 (17) 0.02538 (19) 0.01788 (19) 0.00752 (15) 0.00438 (14) 0.00221 (14)
P2 0.01955 (18) 0.02467 (19) 0.01902 (18) 0.00989 (14) 0.00611 (13) 0.00554 (14)
P3 0.02313 (19) 0.02747 (19) 0.01929 (19) 0.01144 (15) 0.00539 (14) 0.00510 (14)
O1 0.0275 (6) 0.0315 (6) 0.0313 (6) 0.0127 (5) 0.0109 (5) 0.0142 (5)
O2 0.0338 (6) 0.0328 (6) 0.0204 (6) 0.0105 (5) 0.0035 (5) −0.0005 (5)
O3 0.0279 (6) 0.0382 (7) 0.0339 (7) 0.0157 (5) 0.0088 (5) 0.0023 (5)
O4 0.0263 (5) 0.0411 (7) 0.0188 (6) 0.0095 (5) 0.0052 (4) 0.0013 (5)
O5 0.0339 (6) 0.0344 (6) 0.0303 (6) 0.0201 (5) 0.0119 (5) 0.0095 (5)
O6 0.0278 (5) 0.0287 (6) 0.0236 (6) 0.0116 (4) 0.0083 (4) 0.0098 (4)
O7 0.0268 (5) 0.0222 (5) 0.0293 (6) 0.0099 (4) 0.0001 (4) −0.0014 (4)
O8 0.0227 (5) 0.0292 (6) 0.0307 (6) 0.0088 (4) 0.0128 (5) 0.0056 (5)
O9 0.0212 (5) 0.0406 (6) 0.0191 (5) 0.0114 (5) 0.0051 (4) 0.0074 (5)
O10 0.0274 (6) 0.0306 (6) 0.0272 (6) 0.0084 (5) 0.0021 (5) 0.0092 (5)
O11 0.0248 (5) 0.0267 (5) 0.0265 (6) 0.0124 (4) 0.0106 (4) 0.0072 (4)
O12 0.0210 (5) 0.0334 (6) 0.0258 (6) 0.0122 (4) 0.0069 (4) 0.0046 (5)
N1 0.0208 (6) 0.0309 (7) 0.0218 (6) 0.0101 (5) 0.0067 (5) 0.0090 (5)
N2 0.0257 (6) 0.0264 (7) 0.0185 (6) 0.0089 (5) 0.0036 (5) 0.0026 (5)
N3 0.0223 (6) 0.0299 (7) 0.0205 (6) 0.0094 (5) 0.0056 (5) 0.0043 (5)
C1 0.0221 (7) 0.0363 (9) 0.0229 (8) 0.0120 (7) 0.0064 (6) 0.0082 (6)
C5 0.0193 (7) 0.0441 (9) 0.0247 (8) 0.0098 (7) 0.0094 (6) 0.0102 (7)
C6 0.0287 (8) 0.0259 (8) 0.0253 (8) 0.0074 (6) 0.0054 (6) 0.0050 (6)
C7 0.0219 (7) 0.0327 (8) 0.0254 (8) 0.0080 (6) −0.0002 (6) 0.0063 (6)
C8 0.0217 (7) 0.0294 (7) 0.0168 (7) 0.0107 (6) 0.0076 (5) 0.0058 (6)
C9 0.0284 (7) 0.0246 (7) 0.0214 (7) 0.0140 (6) 0.0057 (6) 0.0040 (6)
C10 0.0250 (7) 0.0307 (8) 0.0188 (7) 0.0116 (6) 0.0046 (6) 0.0068 (6)
C11 0.0208 (7) 0.0262 (7) 0.0198 (7) 0.0097 (6) 0.0056 (5) 0.0050 (6)
C12 0.0273 (7) 0.0291 (8) 0.0202 (7) 0.0143 (6) 0.0066 (6) 0.0047 (6)
C13 0.0269 (7) 0.0293 (8) 0.0196 (7) 0.0090 (6) 0.0083 (6) 0.0058 (6)
C14 0.0298 (8) 0.0217 (7) 0.0369 (9) 0.0092 (6) 0.0091 (7) 0.0008 (6)
C15 0.0374 (10) 0.0335 (9) 0.0681 (14) 0.0189 (8) 0.0184 (9) 0.0191 (9)
C16 0.0316 (9) 0.0430 (10) 0.0327 (9) 0.0110 (8) 0.0190 (7) 0.0078 (8)
C17 0.0273 (9) 0.0609 (13) 0.0509 (13) 0.0022 (9) 0.0211 (9) −0.0080 (10)
C18 0.0213 (7) 0.0405 (9) 0.0211 (8) 0.0107 (7) 0.0019 (6) 0.0082 (7)
C19 0.0344 (9) 0.0334 (9) 0.0278 (9) 0.0085 (7) 0.0051 (7) 0.0051 (7)
C20 0.0384 (10) 0.0418 (11) 0.0491 (12) 0.0078 (8) −0.0002 (9) 0.0229 (9)
C21 0.0462 (12) 0.0369 (11) 0.0729 (17) 0.0088 (9) −0.0149 (11) 0.0139 (11)
C22 0.0301 (8) 0.0363 (9) 0.0292 (8) 0.0201 (7) 0.0137 (7) 0.0086 (7)
C23 0.0276 (8) 0.0367 (9) 0.0468 (11) 0.0175 (7) 0.0056 (7) 0.0101 (8)
C24 0.0239 (7) 0.0346 (8) 0.0293 (8) 0.0143 (7) 0.0017 (6) 0.0047 (7)
C25 0.0233 (9) 0.094 (2) 0.0500 (14) −0.0012 (11) 0.0086 (9) −0.0044 (13)
C2 0.0212 (11) 0.0321 (12) 0.0270 (12) 0.0070 (9) 0.0073 (9) 0.0113 (10)
C3 0.0223 (11) 0.0332 (12) 0.0235 (12) 0.0072 (9) 0.0019 (9) 0.0038 (10)
C4 0.0183 (10) 0.0355 (13) 0.0273 (12) 0.0089 (9) 0.0056 (9) 0.0091 (10)
C2A 0.019 (2) 0.030 (2) 0.027 (3) 0.0078 (19) 0.0054 (18) 0.0021 (19)
C3A 0.025 (2) 0.025 (2) 0.025 (2) 0.0073 (19) 0.0072 (19) 0.0052 (19)
C4A 0.026 (2) 0.029 (2) 0.024 (3) 0.007 (2) 0.0009 (19) 0.0017 (19)

Diethyl {[(5-[2-(diethoxyphosphoryl)acetamido]-3-{2-[2-(diethoxyphosphoryl)acetamido]ethyl}pentyl)carbamoyl]methyl}phosphonate. Geometric parameters (Å, º)

P1—O4 1.4696 (12) C9—C12 1.519 (2)
P1—O7 1.5811 (12) C10—C13 1.519 (2)
P1—O8 1.5681 (11) C11—H11A 0.9900
P1—C11 1.7881 (16) C11—H11B 0.9900
P2—O6 1.4722 (12) C12—H12A 0.9900
P2—O11 1.5761 (12) C12—H12B 0.9900
P2—O12 1.5759 (11) C13—H13A 0.9900
P2—C13 1.7936 (16) C13—H13B 0.9900
P3—O5 1.4729 (12) C14—H14A 0.9900
P3—O9 1.5803 (12) C14—H14B 0.9900
P3—O10 1.5697 (12) C14—C15 1.495 (3)
P3—C12 1.7899 (17) C15—H15A 0.9800
O1—C8 1.231 (2) C15—H15B 0.9800
O2—C9 1.231 (2) C15—H15C 0.9800
O3—C10 1.230 (2) C16—H16A 0.9900
O7—C14 1.457 (2) C16—H16B 0.9900
O8—C16 1.4612 (19) C16—C17 1.490 (3)
O9—C18 1.4571 (18) C17—H17A 0.9800
O10—C20 1.448 (2) C17—H17B 0.9800
O11—C22 1.4515 (19) C17—H17C 0.9800
O12—C24 1.455 (2) C18—H18A 0.9900
N1—H1 0.86 (2) C18—H18B 0.9900
N1—C5 1.457 (2) C18—C19 1.502 (3)
N1—C8 1.344 (2) C19—H19A 0.9800
N2—H2 0.79 (2) C19—H19B 0.9800
N2—C6 1.455 (2) C19—H19C 0.9800
N2—C9 1.336 (2) C20—H20A 0.9900
N3—H3 0.82 (2) C20—H20B 0.9900
N3—C7 1.460 (2) C20—C21 1.463 (3)
N3—C10 1.335 (2) C21—H21A 0.9800
C1—H1A 0.97 (2) C21—H21B 0.9800
C1—C2 1.550 (3) C21—H21C 0.9800
C1—C3 1.587 (3) C22—H22A 0.9900
C1—C4 1.532 (3) C22—H22B 0.9900
C1—C2A 1.564 (5) C22—C23 1.501 (2)
C1—C3A 1.447 (5) C23—H23A 0.9800
C1—C4A 1.503 (5) C23—H23B 0.9800
C5—H5AA 0.9900 C23—H23C 0.9800
C5—H5AB 0.9900 C24—H24A 0.9900
C5—H5BC 0.9900 C24—H24B 0.9900
C5—H5BD 0.9900 C24—C25 1.491 (3)
C5—C2 1.577 (3) C25—H25A 0.9800
C5—C2A 1.540 (5) C25—H25B 0.9800
C6—H6AA 0.9900 C25—H25C 0.9800
C6—H6AB 0.9900 C2—H2A 0.9900
C6—H6BC 0.9900 C2—H2B 0.9900
C6—H6BD 0.9900 C3—H3A 0.9900
C6—C3 1.497 (3) C3—H3B 0.9900
C6—C3A 1.619 (5) C4—H4A 0.9900
C7—H7AA 0.9900 C4—H4B 0.9900
C7—H7AB 0.9900 C2A—H2AA 0.9900
C7—H7BC 0.9900 C2A—H2AB 0.9900
C7—H7BD 0.9900 C3A—H3AA 0.9900
C7—C4 1.546 (3) C3A—H3AB 0.9900
C7—C4A 1.490 (6) C4A—H4AA 0.9900
C8—C11 1.521 (2) C4A—H4AB 0.9900
O4—P1—O7 112.90 (7) O7—C14—H14A 110.2
O4—P1—O8 116.05 (7) O7—C14—H14B 110.2
O4—P1—C11 114.00 (7) O7—C14—C15 107.68 (14)
O7—P1—C11 108.90 (7) H14A—C14—H14B 108.5
O8—P1—O7 102.52 (6) C15—C14—H14A 110.2
O8—P1—C11 101.26 (7) C15—C14—H14B 110.2
O6—P2—O11 113.64 (6) C14—C15—H15A 109.5
O6—P2—O12 115.95 (7) C14—C15—H15B 109.5
O6—P2—C13 114.70 (7) C14—C15—H15C 109.5
O11—P2—C13 108.50 (7) H15A—C15—H15B 109.5
O12—P2—O11 101.94 (6) H15A—C15—H15C 109.5
O12—P2—C13 100.62 (7) H15B—C15—H15C 109.5
O5—P3—O9 112.76 (7) O8—C16—H16A 110.0
O5—P3—O10 116.32 (7) O8—C16—H16B 110.0
O5—P3—C12 114.34 (7) O8—C16—C17 108.68 (15)
O9—P3—C12 108.77 (7) H16A—C16—H16B 108.3
O10—P3—O9 102.72 (6) C17—C16—H16A 110.0
O10—P3—C12 100.66 (7) C17—C16—H16B 110.0
C14—O7—P1 119.89 (10) C16—C17—H17A 109.5
C16—O8—P1 119.61 (11) C16—C17—H17B 109.5
C18—O9—P3 120.98 (10) C16—C17—H17C 109.5
C20—O10—P3 121.18 (11) H17A—C17—H17B 109.5
C22—O11—P2 123.56 (10) H17A—C17—H17C 109.5
C24—O12—P2 119.46 (10) H17B—C17—H17C 109.5
C5—N1—H1 121.2 (14) O9—C18—H18A 110.2
C8—N1—H1 117.1 (14) O9—C18—H18B 110.2
C8—N1—C5 121.51 (15) O9—C18—C19 107.77 (14)
C6—N2—H2 119.9 (16) H18A—C18—H18B 108.5
C9—N2—H2 117.7 (16) C19—C18—H18A 110.2
C9—N2—C6 122.08 (14) C19—C18—H18B 110.2
C7—N3—H3 119.5 (15) C18—C19—H19A 109.5
C10—N3—H3 117.9 (15) C18—C19—H19B 109.5
C10—N3—C7 122.40 (15) C18—C19—H19C 109.5
C2—C1—H1A 109.5 (12) H19A—C19—H19B 109.5
C2—C1—C3 107.39 (17) H19A—C19—H19C 109.5
C3—C1—H1A 108.6 (12) H19B—C19—H19C 109.5
C4—C1—H1A 111.6 (12) O10—C20—H20A 109.7
C4—C1—C2 110.97 (17) O10—C20—H20B 109.7
C4—C1—C3 108.61 (16) O10—C20—C21 109.73 (18)
C2A—C1—H1A 103.4 (12) H20A—C20—H20B 108.2
C3A—C1—H1A 103.2 (12) C21—C20—H20A 109.7
C3A—C1—C2A 114.5 (3) C21—C20—H20B 109.7
C3A—C1—C4A 118.3 (3) C20—C21—H21A 109.5
C4A—C1—H1A 104.2 (12) C20—C21—H21B 109.5
C4A—C1—C2A 111.1 (3) C20—C21—H21C 109.5
N1—C5—H5AA 109.0 H21A—C21—H21B 109.5
N1—C5—H5AB 109.0 H21A—C21—H21C 109.5
N1—C5—H5BC 110.0 H21B—C21—H21C 109.5
N1—C5—H5BD 110.0 O11—C22—H22A 109.9
N1—C5—C2 113.05 (14) O11—C22—H22B 109.9
N1—C5—C2A 108.5 (2) O11—C22—C23 108.74 (14)
H5AA—C5—H5AB 107.8 H22A—C22—H22B 108.3
H5BC—C5—H5BD 108.4 C23—C22—H22A 109.9
C2—C5—H5AA 109.0 C23—C22—H22B 109.9
C2—C5—H5AB 109.0 C22—C23—H23A 109.5
C2A—C5—H5BC 110.0 C22—C23—H23B 109.5
C2A—C5—H5BD 110.0 C22—C23—H23C 109.5
N2—C6—H6AA 109.2 H23A—C23—H23B 109.5
N2—C6—H6AB 109.2 H23A—C23—H23C 109.5
N2—C6—H6BC 109.5 H23B—C23—H23C 109.5
N2—C6—H6BD 109.5 O12—C24—H24A 110.2
N2—C6—C3 111.97 (16) O12—C24—H24B 110.2
N2—C6—C3A 110.5 (2) O12—C24—C25 107.54 (16)
H6AA—C6—H6AB 107.9 H24A—C24—H24B 108.5
H6BC—C6—H6BD 108.1 C25—C24—H24A 110.2
C3—C6—H6AA 109.2 C25—C24—H24B 110.2
C3—C6—H6AB 109.2 C24—C25—H25A 109.5
C3A—C6—H6BC 109.5 C24—C25—H25B 109.5
C3A—C6—H6BD 109.5 C24—C25—H25C 109.5
N3—C7—H7AA 109.1 H25A—C25—H25B 109.5
N3—C7—H7AB 109.1 H25A—C25—H25C 109.5
N3—C7—H7BC 110.1 H25B—C25—H25C 109.5
N3—C7—H7BD 110.1 C1—C2—C5 112.41 (18)
N3—C7—C4 112.46 (15) C1—C2—H2A 109.1
N3—C7—C4A 107.8 (2) C1—C2—H2B 109.1
H7AA—C7—H7AB 107.8 C5—C2—H2A 109.1
H7BC—C7—H7BD 108.5 C5—C2—H2B 109.1
C4—C7—H7AA 109.1 H2A—C2—H2B 107.9
C4—C7—H7AB 109.1 C1—C3—H3A 108.8
C4A—C7—H7BC 110.1 C1—C3—H3B 108.8
C4A—C7—H7BD 110.1 C6—C3—C1 113.63 (17)
O1—C8—N1 123.86 (14) C6—C3—H3A 108.8
O1—C8—C11 121.44 (14) C6—C3—H3B 108.8
N1—C8—C11 114.70 (14) H3A—C3—H3B 107.7
O2—C9—N2 123.68 (15) C1—C4—C7 114.59 (17)
O2—C9—C12 121.02 (15) C1—C4—H4A 108.6
N2—C9—C12 115.30 (14) C1—C4—H4B 108.6
O3—C10—N3 124.25 (15) C7—C4—H4A 108.6
O3—C10—C13 120.97 (15) C7—C4—H4B 108.6
N3—C10—C13 114.78 (14) H4A—C4—H4B 107.6
P1—C11—H11A 109.7 C1—C2A—H2AA 108.8
P1—C11—H11B 109.7 C1—C2A—H2AB 108.8
C8—C11—P1 109.70 (10) C5—C2A—C1 113.6 (3)
C8—C11—H11A 109.7 C5—C2A—H2AA 108.8
C8—C11—H11B 109.7 C5—C2A—H2AB 108.8
H11A—C11—H11B 108.2 H2AA—C2A—H2AB 107.7
P3—C12—H12A 109.5 C1—C3A—C6 114.5 (3)
P3—C12—H12B 109.5 C1—C3A—H3AA 108.6
C9—C12—P3 110.80 (11) C1—C3A—H3AB 108.6
C9—C12—H12A 109.5 C6—C3A—H3AA 108.6
C9—C12—H12B 109.5 C6—C3A—H3AB 108.6
H12A—C12—H12B 108.1 H3AA—C3A—H3AB 107.6
P2—C13—H13A 109.6 C1—C4A—H4AA 107.4
P2—C13—H13B 109.6 C1—C4A—H4AB 107.4
C10—C13—P2 110.07 (11) C7—C4A—C1 119.9 (3)
C10—C13—H13A 109.6 C7—C4A—H4AA 107.4
C10—C13—H13B 109.6 C7—C4A—H4AB 107.4
H13A—C13—H13B 108.2 H4AA—C4A—H4AB 106.9
P1—O7—C14—C15 −169.31 (13) N2—C9—C12—P3 114.58 (14)
P1—O8—C16—C17 131.70 (16) N3—C7—C4—C1 55.4 (2)
P2—O11—C22—C23 119.26 (14) N3—C7—C4A—C1 −62.0 (4)
P2—O12—C24—C25 151.86 (17) N3—C10—C13—P2 126.59 (13)
P3—O9—C18—C19 142.53 (12) C5—N1—C8—O1 3.3 (2)
P3—O10—C20—C21 −145.69 (17) C5—N1—C8—C11 −176.51 (13)
O1—C8—C11—P1 −70.88 (17) C6—N2—C9—O2 2.7 (3)
O2—C9—C12—P3 −65.17 (18) C6—N2—C9—C12 −177.08 (14)
O3—C10—C13—P2 −53.21 (19) C7—N3—C10—O3 3.7 (3)
O4—P1—O7—C14 31.54 (14) C7—N3—C10—C13 −176.07 (14)
O4—P1—O8—C16 52.59 (15) C8—N1—C5—C2 78.0 (2)
O4—P1—C11—C8 −41.31 (13) C8—N1—C5—C2A 138.4 (2)
O5—P3—O9—C18 33.23 (14) C9—N2—C6—C3 87.1 (2)
O5—P3—O10—C20 62.32 (17) C9—N2—C6—C3A 143.7 (2)
O5—P3—C12—C9 −45.33 (13) C10—N3—C7—C4 79.6 (2)
O6—P2—O11—C22 27.99 (14) C10—N3—C7—C4A 132.3 (3)
O6—P2—O12—C24 56.73 (14) C11—P1—O7—C14 −96.14 (13)
O6—P2—C13—C10 −34.53 (14) C11—P1—O8—C16 176.58 (13)
O7—P1—O8—C16 −70.93 (14) C12—P3—O9—C18 −94.69 (13)
O7—P1—C11—C8 85.75 (12) C12—P3—O10—C20 −173.55 (16)
O8—P1—O7—C14 157.15 (12) C13—P2—O11—C22 −100.87 (13)
O8—P1—C11—C8 −166.67 (11) C13—P2—O12—C24 −178.94 (12)
O9—P3—O10—C20 −61.33 (16) C2—C1—C3—C6 66.6 (2)
O9—P3—C12—C9 81.70 (12) C2—C1—C4—C7 −174.01 (17)
O10—P3—O9—C18 159.22 (12) C3—C1—C2—C5 −175.92 (16)
O10—P3—C12—C9 −170.81 (11) C3—C1—C4—C7 68.2 (2)
O11—P2—O12—C24 −67.24 (13) C4—C1—C2—C5 65.5 (2)
O11—P2—C13—C10 93.74 (12) C4—C1—C3—C6 −173.29 (18)
O12—P2—O11—C22 153.50 (12) C2A—C1—C3A—C6 177.4 (3)
O12—P2—C13—C10 −159.72 (12) C2A—C1—C4A—C7 −47.4 (5)
N1—C5—C2—C1 61.5 (2) C3A—C1—C2A—C5 −43.5 (4)
N1—C5—C2A—C1 −69.9 (3) C3A—C1—C4A—C7 177.1 (3)
N1—C8—C11—P1 108.97 (13) C4A—C1—C2A—C5 179.2 (3)
N2—C6—C3—C1 62.7 (2) C4A—C1—C3A—C6 −48.6 (5)
N2—C6—C3A—C1 −60.9 (4)

Diethyl {[(5-[2-(diethoxyphosphoryl)acetamido]-3-{2-[2-(diethoxyphosphoryl)acetamido]ethyl}pentyl)carbamoyl]methyl}phosphonate. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O6 0.86 (2) 2.07 (2) 2.9138 (18) 168.8 (19)
N2—H2···O4 0.79 (2) 2.06 (2) 2.8465 (18) 170 (2)
N3—H3···O5 0.82 (2) 2.10 (2) 2.8975 (19) 167 (2)
C11—H11A···O6 0.99 2.36 3.2433 (19) 148
C11—H11B···O6i 0.99 2.48 3.3235 (19) 143
C12—H12A···O4 0.99 2.37 3.2476 (19) 148
C12—H12B···O2ii 0.99 2.35 3.321 (2) 168
C13—H13A···O5 0.99 2.37 3.259 (2) 149
C14—H14A···O1 0.99 2.56 3.326 (2) 135
C17—H17B···O3iii 0.98 2.65 3.427 (3) 137
C18—H18A···O2 0.99 2.57 3.215 (2) 122
C22—H22B···O1i 0.99 2.80 3.472 (2) 126
C23—H23C···O3 0.98 2.69 3.460 (2) 135
C24—H24A···O1i 0.99 2.55 3.480 (2) 156
C24—H24B···O8 0.99 2.57 3.444 (2) 147
C4A—H4AA···O2iv 0.99 2.39 3.241 (5) 144

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+2, −z+1; (iii) x−1, y, z; (iv) −x+2, −y+2, −z+1.

Funding Statement

This work was funded by National Science Foundation, Directorate for Mathematical and Physical Sciences grant CHE-2102576; National Science Foundation, Directorate for Mathematical and Physical Sciences grant CHE-2102381; National Science Foundation, Directorate for Mathematical and Physical Sciences grant CHE-1919565; National Science Foundation, Directorate for Mathematical and Physical Sciences grant CHE-1559886.

References

  1. Archer, C. M., Wadsworth, H. J. & Engell, T. (2004). US Patent Application US 2004/0258619 A1.
  2. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  3. Coburn, K. M., Hardy, D. A., Patterson, M. G., McGraw, S. N., Peruzzi, M. T., Boucher, F., Beelen, B., Sartain, H. T., Neils, T., Lawrence, C. L., Staples, R. J., Werner, E. J. & Biros, S. M. (2016). Inorg. Chim. Acta, 449, 96–106.
  4. Dam, H. H., Reinhoudt, D. N. & Verboom, W. (2007). Chem. Soc. Rev.36, 367–377. [DOI] [PubMed]
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Horwitz, E. P., Diamond, H., Martin, K. A. & Chiarizia, R. (1987). Solvent Extr. Ion Exch.5, 419–446.
  8. Horwitz, E. P., Kalina, D. G., Diamond, H., Vandegrift, G. F. & Schulz, W. W. (1985). Solvent Extr. Ion Exch.3, 75–109.
  9. Leoncini, A., Huskens, J. & Verboom, W. (2017). Chem. Soc. Rev.46, 7229–7273. [DOI] [PubMed]
  10. Matloka, K., Sah, A. K., Peters, M. W., Srinivasan, P., Gelis, A. V., Regalbuto, M. & Scott, M. J. (2007). Inorg. Chem.46, 10549–10563. [DOI] [PubMed]
  11. Ouizem, S., Rosario-Amorin, D., Dickie, D. A., Paine, R. T., de Bettencourt-Dias, A., Hay, B. P., Podair, J. & Delmau, L. H. (2014). Dalton Trans.43, 8368–8386. [DOI] [PubMed]
  12. Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
  13. Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.
  14. Peters, M. W., Werner, E. J. & Scott, M. J. (2002). Inorg. Chem.41, 1707–1716. [DOI] [PubMed]
  15. Rudzevich, V., Kasyan, O., Drapailo, A., Bolte, M., Schollmeyer, D. & Böhmer, V. (2010). Chem. Asian J.5, 1347–1355. [DOI] [PubMed]
  16. Schmidt, C., Saadioui, M., Böhmer, V., Host, V., Spirlet, M.-R., Desreux, J. F., Brisach, F., Arnaud-Neu, F. & Dozol, J.-F. (2003). Org. Biomol. Chem.1, 4089–4096. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. VanderWeide, A. I., Staples, R. J. & Biros, S. M. (2019). Acta Cryst. E75, 991–996. [DOI] [PMC free article] [PubMed]
  20. Werner, E. J. & Biros, S. M. (2019). Org. Chem. Front.6, 2067–2094.
  21. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024008478/vu2007sup1.cif

e-80-00993-sup1.cif (932.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024008478/vu2007Isup3.hkl

e-80-00993-Isup3.hkl (596KB, hkl)
e-80-00993-Isup3.cml (5.9KB, cml)

Supporting information file. DOI: 10.1107/S2056989024008478/vu2007Isup3.cml

CCDC reference: 2379899

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES