Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Aug 13;80(Pt 9):951–955. doi: 10.1107/S2056989024007758

Crystal structure of (1,4,7,10,13,16-hexa­oxa­cycloocta­decane-κ6O)potassium-μ-oxalato-tri­phenylstannate(IV), the first reported 18-crown-6-stabilized potassium salt of tri­phenyl­oxalatostannate

Xueqing Song a,*, William Li a, Yolanda Torres a, Tazena Greaves a
Editor: N Alvarez Failacheb
PMCID: PMC11389670  PMID: 39267864

The single-crystal X-ray structure of [(18-crown-6)K][SnPh3(ox)] (ox = C2O42−) is reported. Integrity between neighboring mol­ecules in the solid state is maintained by an array of C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Keywords: crystal Structure, tri­phenyl­stannate, oxalato, 18-crown-6, potassium

Abstract

The title complex, (1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane-1κ6O)(μ-oxalato-1κ2O1,O2:2κ2O1′,O2′)triphenyl-2κ3C-potassium(I)tin(IV), [KSn(C6H5)3(C2O4)(C12H24O6)] or K[18-Crown-6][(C6H5)3SnO4C2], was synthesized. The complex consists of a potassium cation coordinated to the six oxygen atoms of a crown ether mol­ecule and the two oxygen atoms of the oxalatotri­phenyl­stannate anion. It crystallizes in the monoclinic crystal system within the space group P21. The tin atom is coordinated by one chelating oxalate ligand and three phenyl groups, forming a cis-trigonal–bipyramidal geometry around the tin atom. The cations and anions form ion pairs, linked through carbonyl coordination to the potassium atoms. The crystal structure features C—H⋯O hydrogen bonds between the oxygen atoms of the oxalate group and the hydrogen atoms of the phenyl groups, resulting in an infinite chain structure extending along a-axis direction. The primary inter-chain inter­actions are van der Waals forces.

1. Chemical context

Organotin carboxyl­ates are one of the most significant classes of compounds, valued not only for their theoretical and structural properties but also for their industrial and agricultural applications (Zuckermann et al., 1976). Organotin(IV) carboxyl­ates are particularly notable for their diverse and important biological activities, serving as anti­cancer, anti­viral, anti­bacterial, and anti­fungal agents, as well as wood preservatives and pesticides (Davies & Smith, 1980; Smith et al., 1978; Thayer et al., 1984; Blunden et al., 1985; Evans & Karpel, 1985; Angham et al., 2019; Talebi et al., 2023). Metal complexes of di­carb­oxy­lic acids, such as oxalic acid, have garnered significant inter­est due to their promising magnetic and electrochemical properties. The appeal of oxalate-based coordination compounds lies in their high structural diversity, attributed to the oxalate ligand’s ability to adopt 17 different coordination modes and function as a mono-, bi-, tri-, or tetra­dentate ligand (Krishnamurty & Harris, 1961; Rao et al., 2004). This results in a vast, yet largely unexplored, compositional area. Notably, there are very few reports of organotin complexes of oxalic acid in the literature.

The author has been inter­ested in designing and preparing ionic organotin complexes to improve aqueous solubility through ionization. Since the pioneering work of Pedersen (Pedersen, 1988; Izatt, 2017), crown ethers and their complexes with metal cations have attracted considerable attention. Their remarkable selectivity on metal cations, especially alkali and alkaline earth metal cations, is a topic of fundamental inter­est in both coordination chemistry and biological chemistry (Bajaj et al., 1988; Hay & Rustad, 1994; Lehn et al., 1988; Lee et al., 1996). Literature reports show that crown ethers can be utilized in solid-solid and solid-liquid processes to capture alkali metal and ammonium cations in extended hydrogen-bonded networks formed by inorganic acid anions, such as hydrogen sulfate and di-hydrogen phosphate, as well as organic acid anions (Braga et al., 2005, 2007, 2008, 2009). In this context, we present and discuss the crystal structure of a crown ether-stabilized potassium salt of oxalatotri­phenyl­stannate, 1.1.

2. Structural commentary

The stannate anionic unit of the title compound 1 features a cis-tbp [Ph3Snox] anion, with Sn1—O1 measuring 2.071 (5) Å and Sn1—O2 measuring 2.290 (6) Å, and an O1—Sn1—O2 bond angle of 73.4 (2)° (Fig. 1). This anion is coordinated via its two oxalate carbonyl groups (O3 and O4) to a K[18-crown-6] cation, with K1—O3 at 2.785 (7) Å, K1—O4 at 2.654 (6) Å, and an O3—K1—O4 bond angle of 61.3 (2)° (Fig. 1). The oxalate acts as a bidentate ligand to both tin and potassium, forming two five-membered chelate rings that are coplanar, with a dihedral angle of approximately 0°.

Figure 1.

Figure 1

The asymmetric unit and mol­ecular structure of crystal [(18-crown-6)K][SnPh3(ox)] (1) with anisotropic displacement ellipsoids set to the 50% probability level.

In the [Ph3Snox] portion, the axial Sn-O bond [Sn1—O2 at 2.290 (6) Å] is significantly longer than the equatorial Sn-O bond [Sn1—O1 at 2.071 (5) Å]. The bite angle of 73.4 (2)° is similar to those found in other chelated oxalato tri­phenyl­stannates (Ng et al., 1992; Ng & Kumar Das, 1993; Ng, 1996). The axial Sn—C bond [Sn1—C7 at 2.188 (7) Å] is somewhat longer than the equatorial Sn—C bonds [Sn1—C1 at 2.136 (7) Å and Sn1—C13 at 2.138 (7) Å]. The axial structure is notably bent, with an O2—Sn1—C7 angle of 160.8 (3)°, and the Sn atom is displaced out of the equatorial plane [Σ angles at Sn = 354.9 (3)°] towards the axial C7 atom by 0.119 Å.

The oxalate group in the [Ph3Snox] ion consists of two similar carboxyl­ate (–COO) entities. Both bind to the Sn1 and K1 atoms, with slightly different C—O bond lengths: those bonded to tin [C—O = 1.266 (11) and 1.303 (10) Å] are slightly longer than those bonded to potassium [C—O = 1.233 (11) and 1.202 (10) Å]. The two negative charges appear to be delocalized over the four oxygen atoms in the oxalate group.

In the [K(18-crown-6)]+ complex cation, the potassium atom deviates by 0.614 Å from the root-mean-square plane of the six oxygen atoms in the 18-crown-6 ligand towards the oxalate group. This deviation is due to the coordination of two oxygens from the oxalate group. A similar observation has been reported in the literature (Gjikaj et al., 2005; Liebing et al., 2016; Sellin & Malischewski, 2019) when potassium has axial coordination to other heteroatoms. The K—O bond lengths with the 18-crown-6 ligand range from 2.802 (6) to 2.976 (6) Å, which are slightly longer than those reported for other [K(18-crown-6)]+ complexes in the literature. The increased average K—O bond length with 18-crown-6 is attributed to the strong coordination with the oxalate group, where the two K—O bond lengths with the oxalate group are 2.654 (6) Å and 2.785 (7) Å. The coordination number of the K+ cation is 8. The coordination polyhedron of the potassium cation can be described as a distorted hexa­gonal pyramid with a bifurcated vertex at the O3 and O4 atoms.

3. Supra­molecular features

The title complex 1 exhibits a supra­molecular structure that is consolidated by two weak inter­molecular hydrogen bonds: C4—H4⋯O1 and C16—H16⋯O1, with C⋯O distances of 3.360 (11) and 3.332 (9) Å, respectively (Fig. 2; symmetry codes as in Table 1). These inter­molecular hydrogen bonds result in the formation of a ‘shoulder-to-shoulder’ arrangement of the complex mol­ecules, creating a supra­molecular layer parallel to the (001) plane, as depicted in Figs. 3 and 4.

Figure 2.

Figure 2

Crystal packing in the crystal structure showing C—H⋯O hydrogen bonds, denoted by dashed lines, between neighboring mol­ecules.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.42 3.360 (11) 172
C16—H16⋯O1ii 0.95 2.41 3.332 (9) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

Partial packing plot of 1 along the b axis showing the 1-D chain formed through C—H⋯O hydrogen bonding.

Figure 4.

Figure 4

Packing plot of 1 viewed approximately along [001] showing a layer of mol­ecules perpendicular to the c axis.

In supra­molecular chemistry, weak hydrogen bonds such as C—H⋯π and π–π inter­actions play significant roles in the structural integrity of crystal structures (Meyer et al., 2003; Nishio, 2004). The effectiveness of these inter­actions is primarily influenced by the distance between the hydrogen atom of the C—H bond and the plane of the aromatic ring, which should be less than 2.9 Å (the combined van der Waals radii), and the C—H⋯π access angles, ideally ranging from 140 to 180° (Takahashi et al., 2001).

In the crystal under investigation, relatively weak C—H⋯π inter­actions are observed. The analysis of these inter­actions reveals C—H⋯centroid phenyl distances of 2.936 and 2.937 Å (for H26A⋯C11) and distances of 2.937 and 2.949 Å (for H27B⋯C13). The corresponding access angles are 158° for C1 and 162° for C13. Despite the parallel alignment of phenyl groups (C7–C12) along the (101) direction, significant π–π inter­actions are absent. This is attributed to a large separation distance of 7.006 Å between the planes, which greatly exceeds the critical distance of 4 Å, and an inter-centroid distance of 9.406 Å, surpassing the 6 Å threshold (Ninković et al., 2011).

4. Database survey

A survey of the Cambridge Structural Database (CSD; Groom et al., 2016; Conquest version 2024.1.0, Build 401958; Bruno et al., 2002) reveals thirteen reports of oxalatotri­phenyl­stannate compounds with ammonium ions as counter-ions. Examples include di-iso-propyl­ammonium (Ng & Hook, 1999), di-cyclo-hexyl­ammonium (Ng & Rae, 2000), di­benzyl­ammonium (Gueye et al., 2012), and di-iso-butyl­ammonium (Thorpe et al., 2013). A further search for metal salts of tri­phenyl­stannate came out with one hit, in which a sodium salt of tri­phenyl­stannate named sodium bis­[2-(3′,6′,9′-trioxadec­yl)-1,2-dicarba-closododeca­boane-1-carboxyl­ato]tri­phenyl­stannate was reported (Bregadze et al., 2004). In this reported stannate, the sodium ion is stabilized by coordination to the carbonyl oxygen and five oxygen atoms of trioxadecyl substituents. In contrast, in the title compound 1, the potassium salt of tri­phenyl­stannate is described for the first time, where the potassium ion is primarily stabilized through coordination to 18-crown-6.

5. Synthesis and crystallization

The title coordination complex of tri­phenyl­tin was synthesized by reacting 1 mmol of oxalic acid, 1 mmol of potassium bicarbonate, 1 mmol of 18-crown-6, and 1 mmol of tri­phenyl­tin hydroxide in 30 mL of ethanol. The mixture was refluxed at 373 K with stirring for 1 h. The resulting solution, which was slightly cloudy, was filtered to yield a clear ethanol solution. This filtrate was then allowed to evaporate slowly at 300 K over the course of one week, resulting in colorless crystals suitable for X-ray diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms in compound 1 were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å (ring H atoms) and 0.97 Å (methyl­ene H atoms), and N—H distances of 0.98 Å, with Uiso(H) values of 1.2Ueq of the parent atoms. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement. The Friedel fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences. Ther crystal studied was refined as a two-component twin. Completeness statistics refer to single and composite reflections containing twin component 1 only.

Table 2. Experimental details.

Crystal data
Chemical formula [KSn(C6H5)3(C2O4)(C12H24O6)]
M r 741.42
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 9.4060 (3), 19.3779 (4), 9.4225 (3)
β (°) 97.925 (2)
V3) 1701.02 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.93
Crystal size (mm) 0.06 × 0.06 × 0.03 × 0.02 (radius)
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S dual wavelength Mo/Cu
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022)
Tmin, Tmax 0.913, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15412, 7113, 6792
R int 0.040
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.105, 1.08
No. of reflections 7113
No. of parameters 398
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.28, −0.52
Absolute structure Flack x determined using 2807 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013)
Absolute structure parameter −0.08 (3)

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024007758/ny2007sup1.cif

e-80-00951-sup1.cif (560.7KB, cif)
e-80-00951-Isup3.mol (4.3KB, mol)

Supporting information file. DOI: 10.1107/S2056989024007758/ny2007Isup3.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024007758/ny2007Isup4.hkl

e-80-00951-Isup4.hkl (565KB, hkl)

CCDC reference: 2375984

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

(1,4,7,10,13,16-Hexaoxacyclooctadecane-1κ6O)(µ-oxalato-1κ2O1,O2:2κ2O1',O2')triphenyl-2κ3C-potassium(I)tin(IV) . Crystal data

[KSn(C6H5)3(C2O4)(C12H24O6)] F(000) = 760
Mr = 741.42 Dx = 1.448 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 9.4060 (3) Å Cell parameters from 9822 reflections
b = 19.3779 (4) Å θ = 2.9–31.1°
c = 9.4225 (3) Å µ = 0.93 mm1
β = 97.925 (2)° T = 100 K
V = 1701.02 (8) Å3 Block, colorless
Z = 2 0.06 × 0.06 × 0.03 × 0.02 (radius) mm

(1,4,7,10,13,16-Hexaoxacyclooctadecane-1κ6O)(µ-oxalato-1κ2O1,O2:2κ2O1',O2')triphenyl-2κ3C-potassium(I)tin(IV) . Data collection

Rigaku XtaLAB Synergy-S dual wavelength Mo/Cu diffractometer 7113 independent reflections
Radiation source: microfocus sealed X-ray tube, Rigaku PhotonJet-S 6792 reflections with I > 2σ(I)
Mirror optics monochromator Rint = 0.040
Detector resolution: 10.0000 pixels mm-1 θmax = 27.5°, θmin = 2.9°
ω scans h = −12→11
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2022) k = −23→25
Tmin = 0.913, Tmax = 1.000 l = −11→10
15412 measured reflections

(1,4,7,10,13,16-Hexaoxacyclooctadecane-1κ6O)(µ-oxalato-1κ2O1,O2:2κ2O1',O2')triphenyl-2κ3C-potassium(I)tin(IV) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0708P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 1.28 e Å3
7113 reflections Δρmin = −0.52 e Å3
398 parameters Absolute structure: Flack x determined using 2807 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: −0.08 (3)
Primary atom site location: structure-invariant direct methods

(1,4,7,10,13,16-Hexaoxacyclooctadecane-1κ6O)(µ-oxalato-1κ2O1,O2:2κ2O1',O2')triphenyl-2κ3C-potassium(I)tin(IV) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

(1,4,7,10,13,16-Hexaoxacyclooctadecane-1κ6O)(µ-oxalato-1κ2O1,O2:2κ2O1',O2')triphenyl-2κ3C-potassium(I)tin(IV) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.41008 (5) 0.58376 (2) 0.45935 (5) 0.02209 (12)
O1 0.2517 (6) 0.5552 (3) 0.2950 (6) 0.0223 (10)
O2 0.3969 (8) 0.4658 (3) 0.4651 (8) 0.0369 (16)
O3 0.2847 (9) 0.3760 (4) 0.3470 (9) 0.0484 (19)
O4 0.1482 (7) 0.4720 (3) 0.1562 (7) 0.0312 (14)
C1 0.6233 (8) 0.5741 (5) 0.4077 (8) 0.0256 (19)
C2 0.7115 (10) 0.5176 (4) 0.4492 (9) 0.0306 (18)
H2 0.677139 0.480378 0.500564 0.037*
C3 0.8536 (11) 0.5166 (5) 0.4135 (11) 0.039 (2)
H3 0.913985 0.478341 0.441871 0.047*
C4 0.9046 (10) 0.5691 (5) 0.3399 (10) 0.040 (3)
H4 1.000617 0.568146 0.319164 0.048*
C5 0.8163 (11) 0.6238 (5) 0.2954 (12) 0.038 (2)
H5 0.850759 0.659627 0.240293 0.045*
C6 0.6788 (9) 0.6274 (4) 0.3295 (10) 0.0280 (17)
H6 0.620610 0.666331 0.300060 0.034*
C7 0.3592 (8) 0.6911 (4) 0.4013 (9) 0.0211 (15)
C8 0.4450 (8) 0.7424 (4) 0.4748 (8) 0.0237 (15)
H8 0.519593 0.729495 0.548454 0.028*
C9 0.4225 (8) 0.8126 (4) 0.4413 (8) 0.0232 (14)
H9 0.480264 0.846932 0.492962 0.028*
C10 0.3137 (8) 0.8314 (4) 0.3306 (8) 0.0225 (15)
H10 0.298609 0.878641 0.305833 0.027*
C11 0.2278 (9) 0.7806 (4) 0.2571 (9) 0.0265 (16)
H11 0.152693 0.793270 0.183718 0.032*
C12 0.2525 (9) 0.7106 (4) 0.2917 (9) 0.0246 (16)
H12 0.195505 0.676187 0.239377 0.030*
C13 0.3708 (7) 0.5795 (7) 0.6773 (8) 0.0273 (15)
C14 0.2974 (10) 0.6343 (5) 0.7297 (9) 0.0282 (17)
H14 0.262058 0.670815 0.667257 0.034*
C15 0.2754 (11) 0.6360 (5) 0.8732 (11) 0.038 (2)
H15 0.226304 0.673758 0.908593 0.046*
C16 0.3256 (8) 0.5824 (8) 0.9638 (8) 0.0354 (17)
H16 0.310981 0.583366 1.061508 0.042*
C17 0.3963 (10) 0.5280 (6) 0.9124 (10) 0.038 (2)
H17 0.429710 0.491448 0.975628 0.045*
C18 0.4207 (9) 0.5247 (5) 0.7686 (9) 0.0307 (18)
H18 0.469574 0.486627 0.734140 0.037*
C19 0.2277 (8) 0.4908 (4) 0.2599 (9) 0.0227 (15)
C20 0.3101 (10) 0.4379 (4) 0.3672 (10) 0.0287 (16)
K1 0.10867 (17) 0.33895 (8) 0.09631 (17) 0.0219 (3)
O5 −0.0911 (6) 0.4275 (3) −0.0971 (6) 0.0229 (11)
O6 −0.1562 (6) 0.3828 (3) 0.1682 (6) 0.0248 (12)
O7 −0.0356 (7) 0.2587 (4) 0.2852 (7) 0.0275 (15)
O8 0.2230 (7) 0.2108 (3) 0.2005 (7) 0.0292 (12)
O9 0.2918 (8) 0.2593 (4) −0.0621 (8) 0.0294 (16)
O10 0.1753 (6) 0.3845 (3) −0.1714 (6) 0.0250 (12)
C21 −0.1744 (9) 0.4682 (4) −0.0123 (9) 0.0258 (16)
H21A −0.241853 0.497889 −0.075143 0.031*
H21B −0.110542 0.498315 0.053253 0.031*
C22 −0.2558 (11) 0.4209 (6) 0.0720 (11) 0.029 (2)
H22A −0.319867 0.447871 0.126044 0.035*
H22B −0.315664 0.389015 0.006764 0.035*
C23 −0.2230 (12) 0.3420 (6) 0.2648 (12) 0.035 (2)
H23A −0.286849 0.307414 0.211248 0.042*
H23B −0.281701 0.371518 0.319785 0.042*
C24 −0.1089 (10) 0.3064 (4) 0.3645 (9) 0.0276 (17)
H24A −0.040179 0.340835 0.411697 0.033*
H24B −0.152538 0.281731 0.439726 0.033*
C25 0.0662 (11) 0.2172 (5) 0.3752 (10) 0.035 (2)
H25A 0.016438 0.190038 0.442444 0.042*
H25B 0.137948 0.247248 0.431986 0.042*
C26 0.1389 (11) 0.1701 (4) 0.2836 (10) 0.0339 (19)
H26A 0.201246 0.137366 0.344216 0.041*
H26B 0.066709 0.143313 0.219869 0.041*
C27 0.2983 (11) 0.1707 (5) 0.1108 (11) 0.039 (2)
H27A 0.229728 0.144494 0.041901 0.047*
H27B 0.361344 0.137377 0.168962 0.047*
C28 0.3872 (10) 0.2180 (5) 0.0311 (11) 0.036 (2)
H28A 0.449335 0.247442 0.099552 0.044*
H28B 0.449059 0.190529 −0.024455 0.044*
C29 0.3694 (10) 0.3065 (5) −0.1418 (11) 0.035 (2)
H29A 0.439272 0.280956 −0.191382 0.043*
H29B 0.422566 0.340498 −0.076177 0.043*
C30 0.2618 (11) 0.3427 (5) −0.2491 (10) 0.032 (2)
H30A 0.311547 0.371631 −0.313522 0.038*
H30B 0.201563 0.308548 −0.307951 0.038*
C31 0.0763 (10) 0.4239 (5) −0.2660 (10) 0.027 (2)
H31A 0.010250 0.392884 −0.326933 0.032*
H31B 0.128454 0.452511 −0.329063 0.032*
C32 −0.0073 (9) 0.4696 (4) −0.1780 (8) 0.0253 (16)
H32A 0.059398 0.498412 −0.112634 0.030*
H32B −0.070902 0.500531 −0.241853 0.030*

(1,4,7,10,13,16-Hexaoxacyclooctadecane-1κ6O)(µ-oxalato-1κ2O1,O2:2κ2O1',O2')triphenyl-2κ3C-potassium(I)tin(IV) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.0258 (2) 0.01459 (18) 0.0242 (2) 0.0024 (3) −0.00227 (13) 0.0011 (3)
O1 0.026 (3) 0.016 (2) 0.024 (3) 0.002 (2) −0.0018 (19) 0.001 (2)
O2 0.045 (4) 0.016 (3) 0.043 (4) −0.001 (3) −0.018 (3) −0.001 (3)
O3 0.061 (5) 0.022 (3) 0.053 (5) −0.004 (3) −0.024 (3) −0.002 (3)
O4 0.034 (3) 0.025 (3) 0.031 (3) −0.003 (2) −0.007 (2) −0.002 (2)
C1 0.027 (3) 0.021 (5) 0.027 (3) 0.014 (3) −0.005 (3) −0.001 (3)
C2 0.038 (5) 0.020 (4) 0.030 (5) 0.006 (3) −0.007 (3) −0.003 (3)
C3 0.036 (5) 0.034 (5) 0.043 (5) 0.023 (4) −0.008 (4) −0.012 (4)
C4 0.030 (4) 0.046 (8) 0.044 (5) 0.001 (4) 0.005 (3) −0.022 (5)
C5 0.039 (5) 0.032 (5) 0.043 (6) 0.002 (4) 0.013 (4) −0.010 (4)
C6 0.028 (4) 0.020 (4) 0.035 (5) 0.012 (3) 0.000 (3) −0.003 (3)
C7 0.022 (4) 0.012 (3) 0.030 (5) 0.002 (3) 0.004 (3) 0.005 (3)
C8 0.024 (4) 0.023 (4) 0.024 (4) 0.006 (3) 0.005 (3) 0.001 (3)
C9 0.028 (4) 0.020 (3) 0.023 (4) −0.001 (3) 0.006 (3) −0.001 (3)
C10 0.032 (4) 0.008 (3) 0.027 (4) 0.002 (3) 0.000 (3) 0.002 (3)
C11 0.035 (4) 0.018 (3) 0.024 (4) 0.002 (3) −0.008 (3) 0.002 (3)
C12 0.030 (4) 0.013 (4) 0.028 (5) 0.004 (3) −0.003 (3) 0.002 (3)
C13 0.026 (3) 0.028 (4) 0.027 (3) −0.005 (5) −0.001 (2) 0.001 (5)
C14 0.038 (5) 0.022 (4) 0.023 (4) −0.004 (3) −0.001 (3) 0.004 (3)
C15 0.039 (5) 0.040 (5) 0.038 (5) −0.010 (4) 0.012 (4) −0.005 (4)
C16 0.039 (4) 0.034 (4) 0.032 (4) −0.016 (6) 0.004 (3) 0.009 (6)
C17 0.038 (5) 0.041 (5) 0.030 (4) −0.015 (4) −0.006 (3) 0.017 (4)
C18 0.027 (4) 0.029 (4) 0.035 (5) −0.008 (3) 0.001 (3) 0.000 (4)
C19 0.021 (4) 0.020 (4) 0.027 (4) 0.001 (3) 0.003 (3) 0.004 (3)
C20 0.032 (5) 0.020 (4) 0.029 (5) −0.001 (3) −0.010 (3) 0.004 (3)
K1 0.0241 (7) 0.0168 (7) 0.0240 (8) −0.0005 (5) 0.0001 (5) −0.0004 (5)
O5 0.026 (3) 0.017 (2) 0.026 (3) 0.000 (2) 0.0027 (19) −0.0001 (19)
O6 0.022 (3) 0.020 (3) 0.032 (3) −0.002 (2) 0.003 (2) 0.001 (2)
O7 0.033 (4) 0.026 (3) 0.023 (3) 0.003 (3) 0.002 (2) 0.001 (3)
O8 0.039 (3) 0.017 (3) 0.030 (3) 0.000 (2) −0.002 (2) −0.001 (2)
O9 0.026 (3) 0.026 (3) 0.037 (4) 0.004 (3) 0.007 (3) 0.003 (3)
O10 0.030 (3) 0.018 (3) 0.026 (3) 0.002 (2) 0.002 (2) −0.002 (2)
C21 0.023 (4) 0.021 (4) 0.031 (4) 0.009 (3) −0.004 (3) −0.001 (3)
C22 0.027 (5) 0.032 (5) 0.029 (5) 0.000 (4) 0.006 (4) −0.002 (4)
C23 0.039 (5) 0.028 (5) 0.042 (5) −0.007 (4) 0.018 (4) −0.001 (4)
C24 0.041 (5) 0.015 (4) 0.027 (4) −0.006 (3) 0.007 (3) −0.004 (3)
C25 0.048 (5) 0.031 (4) 0.025 (4) −0.002 (4) 0.001 (4) 0.012 (4)
C26 0.045 (5) 0.018 (4) 0.035 (5) 0.003 (4) −0.005 (4) 0.011 (3)
C27 0.047 (6) 0.029 (5) 0.040 (5) 0.014 (4) −0.004 (4) −0.002 (4)
C28 0.028 (4) 0.030 (4) 0.049 (6) 0.014 (4) 0.001 (4) 0.003 (4)
C29 0.029 (4) 0.025 (4) 0.054 (6) 0.000 (4) 0.011 (4) −0.005 (4)
C30 0.041 (5) 0.031 (5) 0.025 (4) 0.005 (4) 0.013 (4) −0.003 (4)
C31 0.032 (5) 0.019 (4) 0.027 (5) −0.007 (3) 0.000 (4) 0.001 (3)
C32 0.028 (4) 0.026 (4) 0.020 (4) −0.003 (3) −0.002 (3) 0.003 (3)

(1,4,7,10,13,16-Hexaoxacyclooctadecane-1κ6O)(µ-oxalato-1κ2O1,O2:2κ2O1',O2')triphenyl-2κ3C-potassium(I)tin(IV) . Geometric parameters (Å, º)

Sn1—O1 2.071 (5) K1—O7 2.845 (7)
Sn1—O2 2.290 (6) K1—O8 2.827 (6)
Sn1—C1 2.136 (7) K1—O9 2.878 (7)
Sn1—C7 2.188 (7) K1—O10 2.823 (6)
Sn1—C13 2.138 (7) O5—C21 1.430 (9)
O1—C19 1.303 (10) O5—C32 1.425 (9)
O2—C20 1.266 (11) O6—C22 1.418 (12)
O3—C20 1.233 (11) O6—C23 1.417 (11)
O3—K1 2.785 (7) O7—C24 1.426 (10)
O4—C19 1.202 (10) O7—C25 1.435 (11)
O4—K1 2.654 (6) O8—C26 1.425 (11)
C1—C2 1.397 (12) O8—C27 1.408 (11)
C1—C6 1.411 (13) O9—C28 1.415 (11)
C2—H2 0.9500 O9—C29 1.443 (12)
C2—C3 1.422 (14) O10—C30 1.421 (11)
C3—H3 0.9500 O10—C31 1.419 (11)
C3—C4 1.356 (15) C21—H21A 0.9900
C4—H4 0.9500 C21—H21B 0.9900
C4—C5 1.376 (14) C21—C22 1.493 (13)
C5—H5 0.9500 C22—H22A 0.9900
C5—C6 1.377 (13) C22—H22B 0.9900
C6—H6 0.9500 C23—H23A 0.9900
C7—C8 1.401 (11) C23—H23B 0.9900
C7—C12 1.389 (11) C23—C24 1.494 (14)
C8—H8 0.9500 C24—H24A 0.9900
C8—C9 1.406 (10) C24—H24B 0.9900
C9—H9 0.9500 C25—H25A 0.9900
C9—C10 1.405 (11) C25—H25B 0.9900
C10—H10 0.9500 C25—C26 1.486 (13)
C10—C11 1.396 (11) C26—H26A 0.9900
C11—H11 0.9500 C26—H26B 0.9900
C11—C12 1.407 (10) C27—H27A 0.9900
C12—H12 0.9500 C27—H27B 0.9900
C13—C14 1.394 (15) C27—C28 1.508 (15)
C13—C18 1.406 (14) C28—H28A 0.9900
C14—H14 0.9500 C28—H28B 0.9900
C14—C15 1.396 (13) C29—H29A 0.9900
C15—H15 0.9500 C29—H29B 0.9900
C15—C16 1.385 (16) C29—C30 1.502 (14)
C16—H16 0.9500 C30—H30A 0.9900
C16—C17 1.370 (18) C30—H30B 0.9900
C17—H17 0.9500 C31—H31A 0.9900
C17—C18 1.407 (13) C31—H31B 0.9900
C18—H18 0.9500 C31—C32 1.506 (13)
C19—C20 1.567 (11) C32—H32A 0.9900
K1—O5 2.976 (6) C32—H32B 0.9900
K1—O6 2.802 (6)
O1—Sn1—O2 73.4 (2) O8—K1—O9 58.88 (19)
O1—Sn1—C1 114.0 (3) O9—K1—O5 111.35 (18)
O1—Sn1—C7 87.6 (3) O10—K1—O5 58.09 (15)
O1—Sn1—C13 120.4 (3) O10—K1—O7 156.01 (19)
C1—Sn1—O2 88.5 (3) O10—K1—O8 117.67 (18)
C1—Sn1—C7 101.9 (3) O10—K1—O9 58.80 (19)
C1—Sn1—C13 120.5 (3) C21—O5—K1 108.9 (4)
C7—Sn1—O2 160.8 (3) C32—O5—K1 108.0 (4)
C13—Sn1—O2 85.5 (4) C32—O5—C21 111.7 (6)
C13—Sn1—C7 102.5 (4) C22—O6—K1 122.3 (5)
C19—O1—Sn1 121.9 (5) C23—O6—K1 118.3 (6)
C20—O2—Sn1 116.1 (5) C23—O6—C22 112.9 (7)
C20—O3—K1 117.5 (6) C24—O7—K1 106.3 (5)
C19—O4—K1 121.4 (5) C24—O7—C25 112.6 (7)
C2—C1—Sn1 123.1 (7) C25—O7—K1 109.8 (5)
C2—C1—C6 118.1 (7) C26—O8—K1 117.6 (5)
C6—C1—Sn1 118.8 (6) C27—O8—K1 118.3 (5)
C1—C2—H2 120.5 C27—O8—C26 112.8 (6)
C1—C2—C3 119.1 (8) C28—O9—K1 110.8 (5)
C3—C2—H2 120.5 C28—O9—C29 111.0 (7)
C2—C3—H3 119.3 C29—O9—K1 108.2 (5)
C4—C3—C2 121.4 (8) C30—O10—K1 119.7 (5)
C4—C3—H3 119.3 C31—O10—K1 121.5 (5)
C3—C4—H4 120.2 C31—O10—C30 110.8 (7)
C3—C4—C5 119.5 (9) O5—C21—H21A 110.0
C5—C4—H4 120.2 O5—C21—H21B 110.0
C4—C5—H5 119.5 O5—C21—C22 108.6 (7)
C4—C5—C6 121.0 (9) H21A—C21—H21B 108.3
C6—C5—H5 119.5 C22—C21—H21A 110.0
C1—C6—H6 119.6 C22—C21—H21B 110.0
C5—C6—C1 120.8 (8) O6—C22—C21 108.5 (7)
C5—C6—H6 119.6 O6—C22—H22A 110.0
C8—C7—Sn1 117.3 (5) O6—C22—H22B 110.0
C12—C7—Sn1 123.7 (6) C21—C22—H22A 110.0
C12—C7—C8 118.9 (7) C21—C22—H22B 110.0
C7—C8—H8 119.5 H22A—C22—H22B 108.4
C7—C8—C9 121.1 (7) O6—C23—H23A 110.0
C9—C8—H8 119.5 O6—C23—H23B 110.0
C8—C9—H9 120.3 O6—C23—C24 108.5 (8)
C10—C9—C8 119.3 (7) H23A—C23—H23B 108.4
C10—C9—H9 120.3 C24—C23—H23A 110.0
C9—C10—H10 120.1 C24—C23—H23B 110.0
C11—C10—C9 119.8 (7) O7—C24—C23 109.1 (7)
C11—C10—H10 120.1 O7—C24—H24A 109.9
C10—C11—H11 120.0 O7—C24—H24B 109.9
C10—C11—C12 120.0 (7) C23—C24—H24A 109.9
C12—C11—H11 120.0 C23—C24—H24B 109.9
C7—C12—C11 120.9 (8) H24A—C24—H24B 108.3
C7—C12—H12 119.6 O7—C25—H25A 109.9
C11—C12—H12 119.6 O7—C25—H25B 109.9
C14—C13—Sn1 118.1 (7) O7—C25—C26 108.9 (7)
C14—C13—C18 119.9 (7) H25A—C25—H25B 108.3
C18—C13—Sn1 122.0 (7) C26—C25—H25A 109.9
C13—C14—H14 119.8 C26—C25—H25B 109.9
C13—C14—C15 120.5 (8) O8—C26—C25 108.3 (7)
C15—C14—H14 119.8 O8—C26—H26A 110.0
C14—C15—H15 120.1 O8—C26—H26B 110.0
C16—C15—C14 119.7 (9) C25—C26—H26A 110.0
C16—C15—H15 120.1 C25—C26—H26B 110.0
C15—C16—H16 120.0 H26A—C26—H26B 108.4
C17—C16—C15 120.0 (8) O8—C27—H27A 109.9
C17—C16—H16 120.0 O8—C27—H27B 109.9
C16—C17—H17 119.1 O8—C27—C28 108.8 (8)
C16—C17—C18 121.7 (9) H27A—C27—H27B 108.3
C18—C17—H17 119.1 C28—C27—H27A 109.9
C13—C18—C17 118.1 (9) C28—C27—H27B 109.9
C13—C18—H18 121.0 O9—C28—C27 107.8 (8)
C17—C18—H18 121.0 O9—C28—H28A 110.1
O1—C19—C20 114.2 (7) O9—C28—H28B 110.1
O4—C19—O1 124.3 (8) C27—C28—H28A 110.1
O4—C19—C20 121.5 (8) C27—C28—H28B 110.1
O2—C20—C19 113.8 (7) H28A—C28—H28B 108.5
O3—C20—O2 128.3 (8) O9—C29—H29A 110.2
O3—C20—C19 117.9 (8) O9—C29—H29B 110.2
O3—K1—O5 128.47 (19) O9—C29—C30 107.7 (8)
O3—K1—O6 99.3 (2) H29A—C29—H29B 108.5
O3—K1—O7 83.7 (2) C30—C29—H29A 110.2
O3—K1—O8 77.22 (19) C30—C29—H29B 110.2
O3—K1—O9 104.4 (2) O10—C30—C29 107.5 (7)
O3—K1—O10 119.8 (2) O10—C30—H30A 110.2
O4—K1—O3 61.30 (19) O10—C30—H30B 110.2
O4—K1—O5 68.16 (17) C29—C30—H30A 110.2
O4—K1—O6 75.94 (18) C29—C30—H30B 110.2
O4—K1—O7 117.6 (2) H30A—C30—H30B 108.5
O4—K1—O8 138.06 (19) O10—C31—H31A 110.0
O4—K1—O9 123.7 (2) O10—C31—H31B 110.0
O4—K1—O10 81.05 (18) O10—C31—C32 108.5 (7)
O6—K1—O5 57.71 (16) H31A—C31—H31B 108.4
O6—K1—O7 59.86 (18) C32—C31—H31A 110.0
O6—K1—O8 119.38 (18) C32—C31—H31B 110.0
O6—K1—O9 154.6 (2) O5—C32—C31 109.2 (6)
O6—K1—O10 115.80 (18) O5—C32—H32A 109.8
O7—K1—O5 112.53 (18) O5—C32—H32B 109.8
O7—K1—O9 113.74 (19) C31—C32—H32A 109.8
O8—K1—O5 153.77 (17) C31—C32—H32B 109.8
O8—K1—O7 59.61 (19) H32A—C32—H32B 108.3
Sn1—O1—C19—O4 −171.7 (6) K1—O3—C20—C19 6.8 (13)
Sn1—O1—C19—C20 9.4 (10) K1—O4—C19—O1 179.9 (6)
Sn1—O2—C20—O3 179.5 (10) K1—O4—C19—C20 −1.3 (11)
Sn1—O2—C20—C19 0.0 (11) K1—O5—C21—C22 −59.3 (7)
Sn1—C1—C2—C3 −178.2 (6) K1—O5—C32—C31 60.9 (7)
Sn1—C1—C6—C5 179.2 (7) K1—O6—C22—C21 −35.7 (10)
Sn1—C7—C8—C9 178.1 (5) K1—O6—C23—C24 29.9 (9)
Sn1—C7—C12—C11 −178.2 (7) K1—O7—C24—C23 65.7 (7)
Sn1—C13—C14—C15 −176.6 (7) K1—O7—C25—C26 −60.8 (8)
Sn1—C13—C18—C17 176.8 (6) K1—O8—C26—C25 −37.5 (9)
O1—C19—C20—O2 −5.7 (12) K1—O8—C27—C28 38.8 (9)
O1—C19—C20—O3 174.8 (9) K1—O9—C28—C27 59.3 (8)
O4—C19—C20—O2 175.4 (9) K1—O9—C29—C30 −64.4 (8)
O4—C19—C20—O3 −4.2 (14) K1—O10—C30—C29 −34.4 (9)
C1—C2—C3—C4 −0.2 (13) K1—O10—C31—C32 33.9 (8)
C2—C1—C6—C5 −0.1 (13) O5—C21—C22—O6 63.9 (9)
C2—C3—C4—C5 −1.7 (14) O6—C23—C24—O7 −65.8 (9)
C3—C4—C5—C6 2.7 (15) O7—C25—C26—O8 66.3 (9)
C4—C5—C6—C1 −1.8 (14) O8—C27—C28—O9 −66.0 (10)
C6—C1—C2—C3 1.1 (12) O9—C29—C30—O10 66.4 (9)
C7—C8—C9—C10 −1.1 (11) O10—C31—C32—O5 −64.5 (8)
C8—C7—C12—C11 −1.7 (13) C21—O5—C32—C31 −179.4 (7)
C8—C9—C10—C11 1.1 (11) C22—O6—C23—C24 −177.8 (7)
C9—C10—C11—C12 −1.5 (13) C23—O6—C22—C21 173.2 (8)
C10—C11—C12—C7 1.8 (14) C24—O7—C25—C26 −179.0 (7)
C12—C7—C8—C9 1.4 (12) C25—O7—C24—C23 −174.0 (7)
C13—C14—C15—C16 −0.7 (14) C26—O8—C27—C28 −178.2 (8)
C14—C13—C18—C17 −1.0 (12) C27—O8—C26—C25 179.2 (8)
C14—C15—C16—C17 −0.1 (14) C28—O9—C29—C30 173.8 (7)
C15—C16—C17—C18 0.3 (14) C29—O9—C28—C27 179.6 (8)
C16—C17—C18—C13 0.2 (13) C30—O10—C31—C32 −177.4 (7)
C18—C13—C14—C15 1.3 (13) C31—O10—C30—C29 176.3 (7)
K1—O3—C20—O2 −172.6 (9) C32—O5—C21—C22 −178.5 (7)

(1,4,7,10,13,16-Hexaoxacyclooctadecane-1κ6O)(µ-oxalato-1κ2O1,O2:2κ2O1',O2')triphenyl-2κ3C-potassium(I)tin(IV) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O1i 0.95 2.42 3.360 (11) 172
C16—H16···O1ii 0.95 2.41 3.332 (9) 165

Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.

Funding Statement

This work was funded by National Science Foundation grant 2117621 to Xueqing Song and Feddie Dixon; National Science Foundation grant 1622811 to Freddie Dixon; National Science Foundation grant 1833656 to Xueqing Song.

References

  1. Angham, G. H., Khudheir, J., Dina, S. A. & Emad, Y. (2019). Systematic Reviews in Pharmacy, 10, 26–31.
  2. Bajaj, A. V. & Poonia, N. S. (1988). Coord. Chem. Rev.87, 55–213.
  3. Blunden, S. J., Cusack, P. & Hill, R. (1985). The Industrial Uses of Tin Chemicals. London: The Royal Society of Chemistry.
  4. Braga, D., Curzi, M., Lusi, M. & Grepioni, F. (2005). CrystEngComm, 7, 276–278.
  5. Braga, D., d’Agostino, S., Polito, M., Rubini, K. & Grepioni, F. (2009). CrystEngComm, 11, 1994–2002.
  6. Braga, D., Gandolfi, M., Lusi, M., Polito, M., Rubini, K. & Grepioni, F. (2007). Cryst. Growth Des.7, 919–924.
  7. Braga, D., Modena, E., Polito, M., Rubini, K. & Grepioni, F. (2008). New J. Chem.32, 1718–1724.
  8. Bregadze, V. I., Glazun, S. A., Petrovskii, P. V., Starikova, Z. A., Buyanovskaya, A. G., Takazova, R. U., Gielen, M., de Vos, D., Kemmer, M., Biesemans, M. & Willem, R. (2004). Appl. Organom Chem.18, 191–194.
  9. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  10. Davies, A. G. & Smith, P. J. (1980). Adv. Inorg. Chem. Radiochem.23, 1–77.
  11. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  12. Evans, C. J. & Karpel, S. (1985). J. Organomet. Chem. 16.
  13. Gjikaj, M., Adam, A., Duewel, M. & Brockner, W. (2005). Z. Kristallogr.220, 67–68.
  14. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  15. Gueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2012). Acta Cryst. E68, m854–m855. [DOI] [PMC free article] [PubMed]
  16. Hay, B. P. & Rustad, J. R. (1994). J. Am. Chem. Soc.116, 6316–6326.
  17. Izatt, R. M. (2017). Chem. Soc. Rev.46, 2380–2384. [DOI] [PubMed]
  18. Krishnamurty, K. V. & Harris, G. M. (1961). Chem. Rev.61, 213–246.
  19. Lee, H. S., Yang, X. Q., McBreen, J., Choi, L. S. & Okamoto, Y. J. (1996). J. Electrochem. Soc.143, 3825–3829.
  20. Lehn, J. M. (1988). Angew. Chem. Int. Ed. Engl.27, 89–112.
  21. Liebing, P., Zaeni, A., Olbrich, F. & Edelmann, F. T. (2016). Acta Cryst. E72, 1757–1761. [DOI] [PMC free article] [PubMed]
  22. Meyer, E. A., Castellano, R. K. & Diederich, F. (2003). Angew. Chem. Int. Ed.42, 1210–1250. [DOI] [PubMed]
  23. Ng, S. W. (1996). Acta Cryst. C52, 2990–2992.
  24. Ng, S. W. & Hook, J. M. (1999). Acta Cryst. C55, 310–312.
  25. Ng, S. W. & Kumar Das, V. G. (1993). J. Organomet. Chem.456, 175–179.
  26. Ng, S. W., Kumar Das, V. G., Gielen, M. & Tiekink, E. R. T. (1992). Appl. Organomet. Chem.6, 19–25.
  27. Ng, S. W. & Rae, A. D. (2000). Z. Kristallogr.215, 199–204.
  28. Ninković, D. B., Janjić, G. V., Veljković, D. Ž., Sredojević, D. N. & Zarić, S. D. (2011). ChemPhysChem, 12, 3511–3514. [DOI] [PubMed]
  29. Nishio, M. (2004). CrystEngComm, 6, 130–158.
  30. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  31. Pedersen, C. J. (1988). Angew. Chem. Int. Ed. Engl.27, 1021–1027.
  32. Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed.43, 1466–1496. [DOI] [PubMed]
  33. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  34. Sellin, M. & Malischewski, M. (2019). Acta Cryst. E75, 1871–1874. [DOI] [PMC free article] [PubMed]
  35. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  36. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  37. Smith, P. J. (1978). Toxicological Data on Organotin Compounds. ITRI Publication 538. London: International Tin Research Institute.
  38. Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.
  39. Talebi, Z. A., Farhood, A. S. & Hadi, A. G. (2023). Int. J. Pharm. Bio Med. Sci.3, 181–184.
  40. Thayer, J. S. (1984). Organometallic Compounds and Living Organisms. Orlando: Academic Press.
  41. Thorpe, D., Callejas, A., Royzman, D., Pike, R. D., Eng, G. & Song, X. (2013). J. Coord. Chem.66, 3647–3659.
  42. Zuckermann, J. J. (1976). Adv. Chem. Series 157. Washington, DC: American Chemical Society.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024007758/ny2007sup1.cif

e-80-00951-sup1.cif (560.7KB, cif)
e-80-00951-Isup3.mol (4.3KB, mol)

Supporting information file. DOI: 10.1107/S2056989024007758/ny2007Isup3.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024007758/ny2007Isup4.hkl

e-80-00951-Isup4.hkl (565KB, hkl)

CCDC reference: 2375984

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES