Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Aug 13;80(Pt 9):947–950. doi: 10.1107/S2056989024007515

Synthesis and crystal structure of 1,3-bis­(acet­oxymeth­yl)-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­methyl}-2,4,6-tri­ethyl­benzene

Manuel Stapf a, Venugopal Rao Miyyapuram b, Wilhelm Seichter a, Monika Mazik a,*
Editor: J Ellenac
PMCID: PMC11389680  PMID: 39267867

In the crystal structure of the title compound, C26H36N2O4, the tripodal mol­ecule adopts a conformation in which the substituents attached to the central benzene ring are arranged in an alternating order above and below the ring plane.

Keywords: crystal structure, tripodal mol­ecule, hydrogen bonding, C—H⋯π inter­actions

Abstract

In the crystal structure of the title compound, C26H36N2O4, the tripodal mol­ecule exists in a conformation in which the substituents attached to the central arene ring are arranged in an alternating order above and below the ring plane. The heterocyclic unit is inclined at an angle of 79.6 (1)° with respect to the plane of the benzene ring. In the crystal, the mol­ecules are connected via N—H⋯O bonds, forming infinite supra­molecular strands. Inter­strand association involves weak C—H⋯O and C—H⋯π inter­actions, with the pyridine ring acting as an acceptor in the latter case.

1. Chemical context

Recognition units based on 2-amino­pyridine have proved to be valuable building blocks for the construction of artificial carbohydrate receptors that act via non-covalent inter­actions (Mazik et al., 2004, 2005; Mazik, 2009, 2012; Lippe & Mazik, 2015; Seidel et al., 2023). Such units are able to participate in the formation of hydrogen-bonding motifs similar to those observed in natural complexes for the primary amide groups (side chains of asparagine and glutamine). The latter are used by carbohydrate-binding proteins in combination with other functional groups such as hy­droxy, carb­oxy, imidazolyl and isopropyl groups (side chains of serine, aspartic acid, histidine and valine, respectively). The use of a combination of different functional groups enables not only the formation of neutral and charge-reinforced hydrogen bonds, but also of C—H⋯π inter­actions and numerous van der Waals contacts, and is responsible for the observed binding selectivities and efficiencies of the proteins (Quiocho, 1989; Sharon & Lis, 2007; Gabius, 2009; Gabius et al., 2011). Our studies with various acyclic and macrocyclic artificial receptors have also shown that selective and effective binding is favourably influenced by the involvement of different functional groups in the binding process. Among the acyclic receptor mol­ecules, 1,3,5-substituted 2,4,6-tri­alkyl­benzene derivatives have been studied particularly intensively (Lippe et al., 2015; Kaiser et al., 2019; Stapf et al., 2020a; Köhler et al., 2020, 2021, 2024), and different binding properties have been observed depending on the nature of the receptor building blocks. In this article, we describe the crystal structure of 1,3-bis­(acet­oxy­meth­yl)-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene, which is a precursor for the synthesis of a tri­ethyl­benzene derivative bearing a 2-amino­pyridine-based recognition moiety and two hy­droxy­methyl groups.1.

2. Structural commentary

The crystal structure of the title compound, C26H36N2O4, was solved in the monoclinic space group P21/n with the asymmetric unit containing one mol­ecule. As shown in Fig. 1, the mol­ecule adopts a conformation in which the pyridinyl­amino moiety and the two acet­oxy groups are located on one side of the central benzene ring, whereas the ethyl substituents are directed to the opposite side of the ring plane (ababab arrangement; Das & Barbour, 2008a,b, 2009; Koch et al., 2017; Schulze et al., 2017). The mol­ecule exists in a strongly distorted conformation with torsion angles of −166.6 (1) (anti) and −121.3 (1)° (eclipsed) along the Car­yl—C—O—C sequences and an inter­planar angle of 79.6 (1)° between the aromatic rings. The conformation appears to be stabilized by an intra­molecular C—H⋯N hydrogen bond [d(H⋯N) = 2.65 Å] and a C—H⋯O bond [d(H⋯O) = 2.52 Å] involving the ethyl hydrogen atoms H25A, H25B and the acceptor positions N1 and O3 (Table 1).

Figure 1.

Figure 1

Perspective view of the title mol­ecule including atom labelling. Anisotropic displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

Cg represents the centroid of the C8–C12/N2 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.88 (1) 2.10 (1) 2.9776 (16) 173 (1)
C19—H19C⋯O2ii 0.98 2.61 3.1785 (18) 117
C14—H14BCgiii 0.98 2.73 3.5955 (17) 147
C25—H25A⋯N1 0.99 2.65 3.3598 (17) 128
C25—H25B⋯O3 0.99 2.52 3.2250 (15) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

3. Supra­molecular features

The crystal structure is composed of zigzag-like strands of N-H⋯O=C bonded mol­ecules [N1—H1⋯O4, 2.10 (1) Å, 173 (1)°], that extend parallel to the crystallographic b axis (Fig. 2). Inter­strand association is confined to only one C—H⋯π contact (Nishio et al., 2009, 2012) per mol­ecule with the pyridine ring acting as an acceptor [C14—H14BCg, 2.73 Å, 147°] as well as a weak C—H⋯O bond (Desiraju & Steiner, 1999) involving the oxygen atom O2 [C19—H19C⋯O2, 2.61 Å, 117°].

Figure 2.

Figure 2

Packing diagram of the title compound. The N—H⋯O hydrogen bonds are shown as dashed lines.

4. Database survey

Our previous studies have shown that representatives of 1,3,5-substituted 2,4,6-tri­alkyl­benzenes with side arms bearing different functional groups have a better ability to discriminate between various carbohydrate substrates than compounds possessing identical functionalized side arms. In this context, the combination of 2-amino­pyridine-based building blocks with other functional groups was shown to provide compounds capable of acting as effective and selective carbohydrate receptors. The search in the Cambridge Structural Database (CSD, Version 5.45, update June 2024; Groom et al., 2016) for such mol­ecules with one or two pyridin-2-yl-amino­methyl unit(s) yielded thirteen hits. All crystal structures of the tri­ethyl­benzene derivatives listed below have in common that the tripodal mol­ecules adopt a conformation with an alternating arrangement of the substituents above and below the plane of the central benzene ring. The crystal structures of the monohydrate and the methanol solvate of {1-[(3,5-bis­{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benz­yl)amino]­cyclo­pent­yl}methanol (CADTAG, CADTEK; Stapf et al., 2020b) as well as that of the methanol solvate of 1-{[N,N′-bis­(tert-but­oxy­carbon­yl)guanidino]meth­yl}-3,5-bis­{[(6-methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene (HEXVAI; Mazik & Cavga, 2007) are composed of inversion-symmetric mol­ecular dimers in which the water or methanol mol­ecules are enclosed. Thus, the dimers are held together by solvent-mediated hydrogen bonds. In a similar way, the solvent-free crystal structures of 1,3-bis­{[N,N-bis­(2-hy­droxy­eth­yl)amino]­meth­yl}-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene (BEFGAY; Stapf et al., 2022) and 1-{[N,N-bis­(eth­oxy­carbonyl­meth­yl)amino]­meth­yl}-3,5-bis­{[(6-methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­methyl­benz­ene (KEGWID; Mazik & Cavga, 2006) also consist of centrosymmetric dimers as the smallest supra­molecular entity. In the crystal structure of 1,3-bis­{[N-(1,10-phenanthrolin-2-ylcarbon­yl)amino]­methyl-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene (TUGVEX; Mazik et al., 2009), two water mol­ecules and one ethanol mol­ecule are accommodated in the binding pocket created by the heterocyclic units (one pyridinyl and two phenanthrolinyl groups) of the host mol­ecule. The related compound 1-{[N-(1,10-phen­an­throlin-2-ylcarbon­yl)amino]­meth­yl}-3,5-bis­{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene (ROKJEH, ROKJEH01; Mazik & Hartmann, 2008; Mazik et al., 2009), possessing one phenanthrolinyl and two pyridinyl groups, encloses three water mol­ecules in the binding pocket. Both host–water/ethanol aggregates are stabilized by O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds. In the crystal structures of the formamide monosolvate and the n-propanol/H2O solvate of 1-{[2,6-bis­(hy­droxy­meth­yl)-4-methyl­phen­oxy]meth­yl}-3,5-bis­{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene (FIZDOL, FIZDUR; Stapf et al., 2023), the tripodal host mol­ecules adopt similar conformations despite the different solvent mol­ecules. 1-(Bromo­meth­yl)-3,5-bis­{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene was found to crystallize as a diethyl ether solvate (BIYTOT; Mazik & Kuschel, 2008), with the ether oxygen bound to one of the amino groups by hydrogen bonding. Finally, the crystal structures of triethylbenzene derivatives bearing one or two cationic moieties, namely 3-methylpyridinium group(s), in combination with 4,6-dimethylpyridin-2-yl unit(s) (hexafluorophosphate salts; ZITRAZ and ZITRON, respectively; Weisse et al., 2023) should be mentioned.

5. Synthesis and crystallization

A suspension of 1,3-bis­(bromo­meth­yl)-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene (0.30 g, 0.62 mmol) and anhydrous sodium acetate (0.42 g, 5.12 mmol) in acetic acid (3 mL) was stirred at 373 K for 12 h. The solvent was evaporated under reduced pressure. To the obtained white solid, water (3 mL) and CH2Cl2 (3 mL) were added. The aqueous phase was extracted twice with CH2Cl2 (5 mL). The combined organic extracts were treated with a saturated NaHCO3 solution (3 mL), washed with water (5 mL), dried (Na2SO4) and then concentrated. The pale yellow resin was recrystallized from methanol to give the title compound (0.17 g, 62%) as colourless crystals. Single crystals suitable for X-ray diffraction were obtained by slow evaporation from a solution of the title compound in N,N-di­methyl­acetamide.

Analytical data: m.p. 429–431 K; 1H NMR (500 MHz, CDCl3, ppm): δ = 1.18–1.22 (m, 9H, CH3), 2.09 (s, 6H, CH3), 2.24 (s, 3H, CH3), 2.36 (s, 3H, CH3), 2.76 (q, 6H, J = 7.6 Hz, CH2), 4.15 (br s, 1H, NH), 4.39 (d, 2H, J = 4.2 Hz, CH2), 5.21 (s, 4H, OCH2), 6.08 (s, 1H, ar­yl), 6.36 (s, 1H, ar­yl); 13C NMR (125 MHz, CDCl3, ppm): δ = 16.3, 16.5 (CH3), 21.0 (CH3), 21.1 (CH3), 22.8, 23.0 (CH2), 24.1 (CH3), 40.4 (NHCH2), 60.9 (OCH2), 103.5, 114.0, 130.0, 133.2, 145.4, 145.8, 148.9, 156.7, 158.1 (all ar­yl), 171.1 (C=O); MS (APCI): m/z calculated for C26H37N2O4: 441.3 [M + H]+, found 441.2. Elemental analysis for C26H36N2O4 (%): calculated C 70.88, H 8.24, N 6.36; found C 70.68, H 8.20, N 6.40. TLC: Rf = 0.41 [SiO2, toluene/ethyl acetate 3:1 (v/v)].

The educt, 1,3-bis­(bromo­meth­yl)-5-{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene, was synthesized according to the reported procedure (Weisse et al., 2023).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically and refined isotropically using a riding model with C—H = 0.98–0.99 Å (alk­yl), 0.95 Å (ar­yl); Uiso(H) = 1.2–1.5Ueq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C26H36N2O4
M r 440.57
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 12.5184 (4), 9.1855 (2), 22.1339 (6)
β (°) 105.1331 (15)
V3) 2456.87 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.42 × 0.11 × 0.06
 
Data collection
Diffractometer Bruker Kappa APEXII CCD area detector
No. of measured, independent and observed [I > 2σ(I)] reflections 23620, 5984, 4634
R int 0.031
(sin θ/λ)max−1) 0.663
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.03
No. of reflections 5984
No. of parameters 300
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.24

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024007515/ex2085sup1.cif

e-80-00947-sup1.cif (734KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024007515/ex2085Isup2.hkl

e-80-00947-Isup2.hkl (475.9KB, hkl)
e-80-00947-Isup3.cml (9.7KB, cml)

Supporting information file. DOI: 10.1107/S2056989024007515/ex2085Isup3.cml

CCDC reference: 2374683

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Open Access Funding by the Publication Fund of the Technische Universität Bergakademie Freiberg is gratefully acknowledged.

supplementary crystallographic information

{3-[(Acetyloxy)methyl]-5-{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylphenyl}methyl acetate. Crystal data

C26H36N2O4 F(000) = 952
Mr = 440.57 Dx = 1.191 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 12.5184 (4) Å Cell parameters from 6078 reflections
b = 9.1855 (2) Å θ = 2.4–28.3°
c = 22.1339 (6) Å µ = 0.08 mm1
β = 105.1331 (15)° T = 100 K
V = 2456.87 (12) Å3 Needle, colourless
Z = 4 0.42 × 0.11 × 0.06 mm

{3-[(Acetyloxy)methyl]-5-{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylphenyl}methyl acetate. Data collection

Bruker Kappa APEXII CCD area detector diffractometer Rint = 0.031
phi and ω scans θmax = 28.1°, θmin = 2.8°
23620 measured reflections h = −15→16
5984 independent reflections k = −12→11
4634 reflections with I > 2σ(I) l = −29→29

{3-[(Acetyloxy)methyl]-5-{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylphenyl}methyl acetate. Refinement

Refinement on F2 1 restraint
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.589P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
5984 reflections Δρmax = 0.40 e Å3
300 parameters Δρmin = −0.24 e Å3

{3-[(Acetyloxy)methyl]-5-{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylphenyl}methyl acetate. Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

{3-[(Acetyloxy)methyl]-5-{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylphenyl}methyl acetate. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.57195 (8) 0.63700 (10) 0.27696 (5) 0.0206 (2)
O2 0.75502 (8) 0.62688 (10) 0.28844 (5) 0.0251 (2)
O3 0.11605 (8) 0.87452 (10) 0.19905 (4) 0.0185 (2)
O4 0.13164 (10) 0.90318 (11) 0.10076 (4) 0.0284 (2)
N1 0.27865 (10) 0.66995 (12) 0.44466 (5) 0.0184 (2)
N2 0.22044 (10) 0.74686 (12) 0.53067 (5) 0.0187 (2)
C1 0.35590 (11) 0.83570 (12) 0.38032 (5) 0.0133 (2)
C2 0.45669 (10) 0.79830 (12) 0.36834 (6) 0.0136 (2)
C3 0.47462 (10) 0.83050 (12) 0.30955 (6) 0.0135 (2)
C4 0.39092 (11) 0.89452 (12) 0.26199 (6) 0.0129 (2)
C5 0.28887 (10) 0.92766 (12) 0.27416 (5) 0.0122 (2)
C6 0.27068 (10) 0.89825 (12) 0.33303 (5) 0.0125 (2)
C7 0.33606 (11) 0.80813 (13) 0.44406 (6) 0.0166 (3)
H7A 0.4078 0.8061 0.4762 0.020*
H7B 0.2911 0.8883 0.4545 0.020*
C8 0.23040 (11) 0.63821 (14) 0.49228 (6) 0.0166 (3)
C9 0.16947 (12) 0.71630 (15) 0.57598 (6) 0.0216 (3)
C10 0.12987 (12) 0.58025 (16) 0.58463 (6) 0.0234 (3)
H10 0.0956 0.5637 0.6176 0.028*
C11 0.14056 (11) 0.46587 (15) 0.54437 (6) 0.0205 (3)
C12 0.19076 (11) 0.49616 (14) 0.49736 (6) 0.0186 (3)
H12 0.1986 0.4224 0.4687 0.022*
C13 0.15911 (15) 0.84358 (17) 0.61719 (7) 0.0320 (4)
H13A 0.2330 0.8761 0.6403 0.048*
H13B 0.1172 0.8137 0.6468 0.048*
H13C 0.1204 0.9236 0.5912 0.048*
C14 0.09729 (13) 0.31615 (16) 0.55260 (7) 0.0262 (3)
H14A 0.1176 0.2486 0.5232 0.039*
H14B 0.0165 0.3197 0.5445 0.039*
H14C 0.1296 0.2827 0.5955 0.039*
C15 0.54724 (11) 0.72755 (14) 0.41921 (6) 0.0186 (3)
H15A 0.5922 0.6634 0.3996 0.022*
H15B 0.5130 0.6664 0.4459 0.022*
C16 0.62274 (12) 0.84108 (16) 0.46005 (7) 0.0260 (3)
H16A 0.6584 0.9000 0.4340 0.039*
H16B 0.6795 0.7916 0.4925 0.039*
H16C 0.5786 0.9043 0.4798 0.039*
C17 0.58334 (11) 0.78884 (13) 0.29743 (6) 0.0176 (3)
H17A 0.5994 0.8517 0.2645 0.021*
H17B 0.6442 0.7992 0.3360 0.021*
C18 0.66651 (11) 0.56814 (14) 0.27606 (6) 0.0182 (3)
C19 0.64560 (13) 0.41217 (15) 0.25739 (8) 0.0301 (3)
H19A 0.6259 0.4045 0.2116 0.045*
H19B 0.5847 0.3748 0.2732 0.045*
H19C 0.7125 0.3550 0.2751 0.045*
C20 0.41205 (11) 0.93293 (13) 0.19939 (6) 0.0161 (3)
H20A 0.3421 0.9246 0.1661 0.019*
H20B 0.4656 0.8629 0.1899 0.019*
C21 0.45783 (12) 1.08797 (14) 0.19947 (7) 0.0217 (3)
H21A 0.4083 1.1567 0.2125 0.033*
H21B 0.4629 1.1129 0.1573 0.033*
H21C 0.5315 1.0932 0.2287 0.033*
C22 0.19501 (11) 0.99175 (13) 0.22362 (6) 0.0154 (3)
H22A 0.1582 1.0705 0.2412 0.018*
H22B 0.2238 1.0332 0.1897 0.018*
C23 0.09262 (11) 0.84169 (14) 0.13812 (6) 0.0171 (3)
C24 0.01268 (13) 0.71748 (16) 0.12222 (6) 0.0248 (3)
H24A −0.0613 0.7550 0.1019 0.037*
H24B 0.0107 0.6656 0.1606 0.037*
H24C 0.0363 0.6506 0.0937 0.037*
C25 0.16236 (11) 0.93941 (13) 0.34683 (6) 0.0155 (2)
H25A 0.1467 0.8708 0.3780 0.019*
H25B 0.1016 0.9312 0.3080 0.019*
C26 0.16604 (12) 1.09505 (14) 0.37219 (7) 0.0229 (3)
H26A 0.2244 1.1025 0.4114 0.034*
H26B 0.0945 1.1191 0.3800 0.034*
H26C 0.1815 1.1631 0.3415 0.034*
H1 0.3047 (13) 0.5952 (13) 0.4283 (7) 0.022 (4)*

{3-[(Acetyloxy)methyl]-5-{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylphenyl}methyl acetate. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0143 (5) 0.0159 (5) 0.0321 (5) 0.0015 (3) 0.0069 (4) −0.0065 (4)
O2 0.0159 (5) 0.0221 (5) 0.0394 (6) 0.0014 (4) 0.0107 (4) 0.0042 (4)
O3 0.0164 (5) 0.0236 (5) 0.0143 (4) −0.0058 (4) 0.0019 (3) 0.0013 (3)
O4 0.0416 (7) 0.0271 (5) 0.0184 (5) −0.0097 (5) 0.0111 (4) 0.0003 (4)
N1 0.0270 (7) 0.0129 (5) 0.0186 (5) −0.0006 (4) 0.0117 (5) −0.0002 (4)
N2 0.0195 (6) 0.0203 (5) 0.0172 (5) 0.0008 (4) 0.0065 (4) −0.0007 (4)
C1 0.0170 (6) 0.0103 (5) 0.0127 (5) −0.0019 (4) 0.0038 (4) −0.0007 (4)
C2 0.0149 (6) 0.0094 (5) 0.0152 (6) −0.0004 (4) 0.0014 (5) −0.0012 (4)
C3 0.0131 (6) 0.0096 (5) 0.0181 (6) −0.0014 (4) 0.0046 (5) −0.0025 (4)
C4 0.0159 (6) 0.0087 (5) 0.0150 (6) −0.0016 (4) 0.0052 (5) −0.0013 (4)
C5 0.0129 (6) 0.0093 (5) 0.0138 (5) −0.0008 (4) 0.0024 (4) −0.0013 (4)
C6 0.0138 (6) 0.0093 (5) 0.0149 (6) −0.0009 (4) 0.0047 (4) −0.0016 (4)
C7 0.0219 (7) 0.0151 (6) 0.0130 (6) −0.0013 (5) 0.0046 (5) 0.0006 (4)
C8 0.0163 (7) 0.0191 (6) 0.0141 (6) 0.0024 (5) 0.0037 (5) 0.0032 (5)
C9 0.0211 (7) 0.0271 (7) 0.0184 (6) 0.0025 (5) 0.0085 (5) −0.0010 (5)
C10 0.0239 (8) 0.0300 (7) 0.0193 (6) −0.0005 (6) 0.0110 (5) 0.0028 (5)
C11 0.0168 (7) 0.0226 (7) 0.0218 (6) 0.0015 (5) 0.0046 (5) 0.0057 (5)
C12 0.0202 (7) 0.0181 (6) 0.0183 (6) 0.0024 (5) 0.0065 (5) 0.0022 (5)
C13 0.0421 (10) 0.0322 (8) 0.0286 (8) −0.0012 (7) 0.0214 (7) −0.0069 (6)
C14 0.0265 (8) 0.0247 (7) 0.0291 (7) −0.0021 (6) 0.0107 (6) 0.0070 (6)
C15 0.0179 (7) 0.0164 (6) 0.0188 (6) 0.0042 (5) −0.0002 (5) 0.0010 (5)
C16 0.0218 (8) 0.0269 (7) 0.0234 (7) 0.0033 (6) −0.0046 (5) −0.0039 (6)
C17 0.0145 (6) 0.0149 (6) 0.0241 (6) −0.0002 (5) 0.0061 (5) −0.0034 (5)
C18 0.0164 (7) 0.0194 (6) 0.0207 (6) 0.0044 (5) 0.0079 (5) 0.0036 (5)
C19 0.0254 (8) 0.0191 (7) 0.0486 (9) 0.0040 (6) 0.0144 (7) −0.0057 (6)
C20 0.0188 (7) 0.0154 (6) 0.0162 (6) 0.0001 (5) 0.0081 (5) −0.0001 (5)
C21 0.0279 (8) 0.0163 (6) 0.0257 (7) −0.0013 (5) 0.0157 (6) 0.0026 (5)
C22 0.0155 (6) 0.0141 (6) 0.0157 (6) 0.0001 (5) 0.0024 (5) 0.0011 (4)
C23 0.0168 (7) 0.0174 (6) 0.0156 (6) 0.0028 (5) 0.0018 (5) 0.0027 (5)
C24 0.0233 (8) 0.0270 (7) 0.0201 (6) −0.0070 (6) −0.0015 (5) 0.0009 (5)
C25 0.0127 (6) 0.0173 (6) 0.0173 (6) 0.0004 (5) 0.0053 (5) −0.0015 (5)
C26 0.0248 (8) 0.0190 (6) 0.0260 (7) 0.0052 (5) 0.0085 (6) −0.0033 (5)

{3-[(Acetyloxy)methyl]-5-{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylphenyl}methyl acetate. Geometric parameters (Å, º)

O1—C18 1.3469 (16) C13—H13C 0.9800
O1—C17 1.4619 (15) C14—H14A 0.9800
O2—C18 1.1980 (17) C14—H14B 0.9800
O3—C23 1.3377 (15) C14—H14C 0.9800
O3—C22 1.4669 (15) C15—C16 1.5336 (19)
O4—C23 1.2051 (16) C15—H15A 0.9900
N1—C8 1.3761 (16) C15—H15B 0.9900
N1—C7 1.4603 (16) C16—H16A 0.9800
N1—H1 0.878 (9) C16—H16B 0.9800
N2—C8 1.3375 (17) C16—H16C 0.9800
N2—C9 1.3511 (17) C17—H17A 0.9900
C1—C2 1.3982 (18) C17—H17B 0.9900
C1—C6 1.4073 (17) C18—C19 1.4952 (19)
C1—C7 1.5164 (16) C19—H19A 0.9800
C2—C3 1.4083 (17) C19—H19B 0.9800
C2—C15 1.5194 (17) C19—H19C 0.9800
C3—C4 1.4057 (17) C20—C21 1.5349 (17)
C3—C17 1.5038 (18) C20—H20A 0.9900
C4—C5 1.4060 (17) C20—H20B 0.9900
C4—C20 1.5185 (16) C21—H21A 0.9800
C5—C6 1.4063 (16) C21—H21B 0.9800
C5—C22 1.5140 (16) C21—H21C 0.9800
C6—C25 1.5137 (17) C22—H22A 0.9900
C7—H7A 0.9900 C22—H22B 0.9900
C7—H7B 0.9900 C23—C24 1.4977 (19)
C8—C12 1.4108 (18) C24—H24A 0.9800
C9—C10 1.376 (2) C24—H24B 0.9800
C9—C13 1.5092 (19) C24—H24C 0.9800
C10—C11 1.406 (2) C25—C26 1.5322 (17)
C10—H10 0.9500 C25—H25A 0.9900
C11—C12 1.3770 (18) C25—H25B 0.9900
C11—C14 1.5064 (19) C26—H26A 0.9800
C12—H12 0.9500 C26—H26B 0.9800
C13—H13A 0.9800 C26—H26C 0.9800
C13—H13B 0.9800
C18—O1—C17 115.95 (10) H15A—C15—H15B 107.9
C23—O3—C22 119.24 (10) C15—C16—H16A 109.5
C8—N1—C7 120.44 (10) C15—C16—H16B 109.5
C8—N1—H1 115.8 (11) H16A—C16—H16B 109.5
C7—N1—H1 116.1 (11) C15—C16—H16C 109.5
C8—N2—C9 117.18 (12) H16A—C16—H16C 109.5
C2—C1—C6 120.38 (11) H16B—C16—H16C 109.5
C2—C1—C7 120.69 (11) O1—C17—C3 106.17 (10)
C6—C1—C7 118.92 (11) O1—C17—H17A 110.5
C1—C2—C3 119.53 (11) C3—C17—H17A 110.5
C1—C2—C15 120.01 (11) O1—C17—H17B 110.5
C3—C2—C15 120.43 (11) C3—C17—H17B 110.5
C4—C3—C2 120.82 (11) H17A—C17—H17B 108.7
C4—C3—C17 120.35 (11) O2—C18—O1 123.31 (12)
C2—C3—C17 118.78 (11) O2—C18—C19 125.41 (13)
C3—C4—C5 118.95 (11) O1—C18—C19 111.28 (12)
C3—C4—C20 120.47 (11) C18—C19—H19A 109.5
C5—C4—C20 120.53 (11) C18—C19—H19B 109.5
C4—C5—C6 120.72 (11) H19A—C19—H19B 109.5
C4—C5—C22 120.75 (10) C18—C19—H19C 109.5
C6—C5—C22 118.50 (11) H19A—C19—H19C 109.5
C5—C6—C1 119.53 (11) H19B—C19—H19C 109.5
C5—C6—C25 120.62 (11) C4—C20—C21 111.62 (10)
C1—C6—C25 119.80 (11) C4—C20—H20A 109.3
N1—C7—C1 110.74 (10) C21—C20—H20A 109.3
N1—C7—H7A 109.5 C4—C20—H20B 109.3
C1—C7—H7A 109.5 C21—C20—H20B 109.3
N1—C7—H7B 109.5 H20A—C20—H20B 108.0
C1—C7—H7B 109.5 C20—C21—H21A 109.5
H7A—C7—H7B 108.1 C20—C21—H21B 109.5
N2—C8—N1 117.44 (11) H21A—C21—H21B 109.5
N2—C8—C12 123.12 (12) C20—C21—H21C 109.5
N1—C8—C12 119.40 (11) H21A—C21—H21C 109.5
N2—C9—C10 123.30 (12) H21B—C21—H21C 109.5
N2—C9—C13 114.79 (12) O3—C22—C5 107.84 (9)
C10—C9—C13 121.90 (13) O3—C22—H22A 110.1
C9—C10—C11 119.53 (12) C5—C22—H22A 110.1
C9—C10—H10 120.2 O3—C22—H22B 110.1
C11—C10—H10 120.2 C5—C22—H22B 110.1
C12—C11—C10 117.74 (13) H22A—C22—H22B 108.5
C12—C11—C14 121.68 (13) O4—C23—O3 124.38 (12)
C10—C11—C14 120.58 (12) O4—C23—C24 124.16 (12)
C11—C12—C8 119.11 (12) O3—C23—C24 111.45 (11)
C11—C12—H12 120.4 C23—C24—H24A 109.5
C8—C12—H12 120.4 C23—C24—H24B 109.5
C9—C13—H13A 109.5 H24A—C24—H24B 109.5
C9—C13—H13B 109.5 C23—C24—H24C 109.5
H13A—C13—H13B 109.5 H24A—C24—H24C 109.5
C9—C13—H13C 109.5 H24B—C24—H24C 109.5
H13A—C13—H13C 109.5 C6—C25—C26 111.35 (11)
H13B—C13—H13C 109.5 C6—C25—H25A 109.4
C11—C14—H14A 109.5 C26—C25—H25A 109.4
C11—C14—H14B 109.5 C6—C25—H25B 109.4
H14A—C14—H14B 109.5 C26—C25—H25B 109.4
C11—C14—H14C 109.5 H25A—C25—H25B 108.0
H14A—C14—H14C 109.5 C25—C26—H26A 109.5
H14B—C14—H14C 109.5 C25—C26—H26B 109.5
C2—C15—C16 111.82 (10) H26A—C26—H26B 109.5
C2—C15—H15A 109.3 C25—C26—H26C 109.5
C16—C15—H15A 109.3 H26A—C26—H26C 109.5
C2—C15—H15B 109.3 H26B—C26—H26C 109.5
C16—C15—H15B 109.3
C6—C1—C2—C3 3.27 (17) C7—N1—C8—N2 11.94 (18)
C7—C1—C2—C3 −177.42 (11) C7—N1—C8—C12 −170.12 (12)
C6—C1—C2—C15 −178.56 (11) C8—N2—C9—C10 1.1 (2)
C7—C1—C2—C15 0.75 (17) C8—N2—C9—C13 −179.11 (13)
C1—C2—C3—C4 −2.52 (17) N2—C9—C10—C11 −0.9 (2)
C15—C2—C3—C4 179.31 (11) C13—C9—C10—C11 179.24 (14)
C1—C2—C3—C17 −179.72 (11) C9—C10—C11—C12 −0.1 (2)
C15—C2—C3—C17 2.11 (17) C9—C10—C11—C14 −179.63 (13)
C2—C3—C4—C5 0.69 (17) C10—C11—C12—C8 1.0 (2)
C17—C3—C4—C5 177.86 (10) C14—C11—C12—C8 −179.52 (12)
C2—C3—C4—C20 178.20 (10) N2—C8—C12—C11 −0.9 (2)
C17—C3—C4—C20 −4.63 (17) N1—C8—C12—C11 −178.70 (12)
C3—C4—C5—C6 0.39 (17) C1—C2—C15—C16 −88.79 (15)
C20—C4—C5—C6 −177.12 (10) C3—C2—C15—C16 89.37 (14)
C3—C4—C5—C22 −177.83 (10) C18—O1—C17—C3 −166.61 (11)
C20—C4—C5—C22 4.67 (17) C4—C3—C17—O1 −92.28 (13)
C4—C5—C6—C1 0.36 (17) C2—C3—C17—O1 84.94 (13)
C22—C5—C6—C1 178.61 (10) C17—O1—C18—O2 −3.15 (18)
C4—C5—C6—C25 177.60 (11) C17—O1—C18—C19 177.29 (11)
C22—C5—C6—C25 −4.15 (16) C3—C4—C20—C21 −89.67 (14)
C2—C1—C6—C5 −2.21 (17) C5—C4—C20—C21 87.81 (14)
C7—C1—C6—C5 178.47 (10) C23—O3—C22—C5 −121.28 (12)
C2—C1—C6—C25 −179.47 (11) C4—C5—C22—O3 102.10 (12)
C7—C1—C6—C25 1.21 (16) C6—C5—C22—O3 −76.15 (13)
C8—N1—C7—C1 −165.33 (11) C22—O3—C23—O4 −0.62 (19)
C2—C1—C7—N1 −95.56 (14) C22—O3—C23—C24 178.70 (11)
C6—C1—C7—N1 83.76 (14) C5—C6—C25—C26 −88.44 (13)
C9—N2—C8—N1 177.71 (12) C1—C6—C25—C26 88.80 (14)
C9—N2—C8—C12 −0.15 (19)

{3-[(Acetyloxy)methyl]-5-{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylphenyl}methyl acetate. Hydrogen-bond geometry (Å, º)

Cg represents the centroid of the C8–C12/N2 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1···O4i 0.88 (1) 2.10 (1) 2.9776 (16) 173 (1)
C19—H19C···O2ii 0.98 2.61 3.1785 (18) 117
C14—H14B···Cgiii 0.98 2.73 3.5955 (17) 147
C25—H25A···N1 0.99 2.65 3.3598 (17) 128
C25—H25B···O3 0.99 2.52 3.2250 (15) 128

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x, −y+1, −z+1.

References

  1. Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Das, D. & Barbour, L. J. (2008a). J. Am. Chem. Soc.130, 14032–14033. [DOI] [PubMed]
  3. Das, D. & Barbour, L. J. (2008b). Chem. Commun. pp. 5110–5112. [DOI] [PubMed]
  4. Das, D. & Barbour, L. J. (2009). Cryst. Growth Des.9, 1599–1604.
  5. Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.
  6. Farrugia, L. J. (2012). J. Appl. Cryst.45, 849–854.
  7. Gabius, H.-J. (2009). The Sugar Code – Fundamentals of Glycosciences. Weinheim: Wiley-VCH.
  8. Gabius, H.-J., André, S., Jiménez-Barbero, J., Romero, A. & Solís, D. (2011). Trends Biochem. Sci.36, 298–313. [DOI] [PubMed]
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Kaiser, S., Geffert, C. & Mazik, M. (2019). Eur. J. Org. Chem. pp. 7555–7562.
  11. Koch, N., Seichter, W. & Mazik, M. (2017). CrystEngComm, 19, 3817–3833.
  12. Köhler, L., Hübler, C., Seichter, W. & Mazik, M. (2021). RSC Adv.11, 22221–22229. [DOI] [PMC free article] [PubMed]
  13. Köhler, L., Kaiser, S. & Mazik, M. (2024). Nat. Prod. Commun.19 (accepted). https://doi.org/10.1177/1934578X241258352
  14. Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034.
  15. Lippe, J. & Mazik, M. (2015). J. Org. Chem.80, 1427–1439. [DOI] [PubMed]
  16. Lippe, J., Seichter, W. & Mazik, M. (2015). Org. Biomol. Chem.13, 11622–11632. [DOI] [PubMed]
  17. Mazik, M. (2009). Chem. Soc. Rev.38, 935–956. [DOI] [PubMed]
  18. Mazik, M. (2012). RSC Adv.2, 2630–2642.
  19. Mazik, M. & Cavga, H. (2006). J. Org. Chem.71, 2957–2963. [DOI] [PubMed]
  20. Mazik, M. & Cavga, H. (2007). J. Org. Chem.72, 831–838. [DOI] [PubMed]
  21. Mazik, M., Cavga, H. & Jones, P. G. (2005). J. Am. Chem. Soc.127, 9045–9052. [DOI] [PubMed]
  22. Mazik, M. & Hartmann, A. (2008). J. Org. Chem.73, 7444–7450. [DOI] [PubMed]
  23. Mazik, M., Hartmann, A. & Jones, P. G. (2009). Chem. Eur. J.15, 9147–9159. [DOI] [PubMed]
  24. Mazik, M. & Kuschel, M. (2008). Chem. Eur. J.14, 2405–2419. [DOI] [PubMed]
  25. Mazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem.69, 7448–7462. [DOI] [PubMed]
  26. Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.
  27. Nishio, M., Umezawa, Y., Suezawa, H. & Tsuboyama, S. (2012). In The Importance of Pi-Interactions in Crystal Engineering: Frontiers in Crystal Engineering, edited by E. R. T. Tiekink and J. Zukerman-Schpector, pp. 1–40. Chichester: Wiley.
  28. Quiocho, F. A. (1989). Pure Appl. Chem.61, 1293–1306.
  29. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  30. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  31. Schulze, M. M., Schwarzer, A. & Mazik, M. (2017). CrystEngComm, 19, 4003–4016.
  32. Seidel, P., Seichter, W. & Mazik, M. (2023). ChemistryOpen, 12, e202300019. [DOI] [PMC free article] [PubMed]
  33. Sharon, N. & Lis, H. (2007). Lectins, 2nd ed. Dordrecht: Springer.
  34. Stapf, M., Schmidt, U., Seichter, W. & Mazik, M. (2022). Acta Cryst. E78, 825–828. [DOI] [PMC free article] [PubMed]
  35. Stapf, M., Schmidt, U., Seichter, W. & Mazik, M. (2023). Acta Cryst. E79, 1067–1071. [DOI] [PMC free article] [PubMed]
  36. Stapf, M., Seichter, W. & Mazik, M. (2020a). Eur. J. Org. Chem. pp. 4900–4915.
  37. Stapf, M., Seichter, W. & Mazik, M. (2020b). Acta Cryst. E76, 1679–1683. [DOI] [PMC free article] [PubMed]
  38. Weisse, A., Seichter, W. & Mazik, M. (2023). Molecules, 28, 6485–6503. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024007515/ex2085sup1.cif

e-80-00947-sup1.cif (734KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024007515/ex2085Isup2.hkl

e-80-00947-Isup2.hkl (475.9KB, hkl)
e-80-00947-Isup3.cml (9.7KB, cml)

Supporting information file. DOI: 10.1107/S2056989024007515/ex2085Isup3.cml

CCDC reference: 2374683

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES