Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Sep 10:2024.09.10.612293. [Version 1] doi: 10.1101/2024.09.10.612293

A cell and transcriptome atlas of the human arterial vasculature

Quanyi Zhao, Albert Pedroza, Disha Sharma, Wenduo Gu, Alex Dalal, Chad Weldy, William Jackson, Daniel Yuhang Li, Yana Ryan, Trieu Nguyen, Rohan Shad, Brian T Palmisano, João P Monteiro, Matthew Worssam, Alexa Berezwitz, Meghana Iyer, Huitong Shi, Ramendra Kundu, Lasemahang Limbu, Juyong Brian Kim, Anshul Kundaje, Michael Fischbein, Robert Wirka, Thomas Quertermous, Paul Cheng
PMCID: PMC11419041  PMID: 39314359

SUMMARY

Vascular beds show different propensities for different vascular pathologies, yet mechanisms explaining these fundamental differences remain unknown. We sought to build a transcriptomic, cellular, and spatial atlas of human arterial cells across multiple different arterial segments to understand this phenomenon. We found significant cell type-specific segmental heterogeneity. Determinants of arterial identity are predominantly encoded in fibroblasts and smooth muscle cells, and their differentially expressed genes are particularly enriched for vascular disease-associated loci and genes. Adventitial fibroblast-specific heterogeneity in gene expression coincides with numerous vascular disease risk genes, suggesting a previously unrecognized role for this cell type in disease risk. Adult arterial cells from different segments cluster not by anatomical proximity but by embryonic origin, with differentially regulated genes heavily influenced by developmental master regulators. Non-coding transcriptomes across arterial cells contain extensive variation in lnc-RNAs expressed in cell type- and segment-specific patterns, rivaling heterogeneity in protein coding transcriptomes, and show enrichment for non-coding genetic signals for vascular diseases.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES