Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Aug;468:487–499. doi: 10.1113/jphysiol.1993.sp019783

Excitation failure in eccentric contraction-induced injury of mouse soleus muscle.

G L Warren 1, D A Lowe 1, D A Hayes 1, C J Karwoski 1, B M Prior 1, R B Armstrong 1
PMCID: PMC1143838  PMID: 8254518

Abstract

1. Histological evidence suggests that the force deficit associated with eccentric contraction-induced muscle injury is due to structural damage to contractile elements within the muscle fibre. Alternatively, the force deficit could be explained by an inability to activate the contractile proteins. It was the objective of this study to investigate the latter possibility. 2. Mouse soleus muscles were isolated, placed in an oxygenated Krebs-Ringer buffer at 37 degrees C, and baseline measurements were made. The muscle then performed one of three contraction protocols: (1) twenty eccentric (n = 10 muscles); (2) ten eccentric (n = 12); or (3) twenty isometric (n = 10) contractions. At the end of the injury protocol, measurements were made during performance of a passive stretch, twitch and tetanus. Next, force was recorded during exposure of the muscle to buffer containing 50 mM caffeine. 3. Decrements in maximal isometric tetanic force (P0) observed for muscles in the twenty eccentric, ten eccentric, and twenty isometric contraction protocols were 42.6 +/- 4.2, 20.0 +/- 2.3 and 3.9 +/- 2.4%, respectively. However, the caffeine-elicited forces in muscles from the three protocols were not different when corrected for initial differences in P0 (64.9 +/- 1.3, 64.2 +/- 2.1 and 68.9 +/- 2.5% of pre-injury P0). The peak caffeine-elicited force was 118.4 +/- 8.6% of post-injury P0 for the muscles in the twenty eccentric contraction protocol, which was significantly different from that observed for the other protocols (71.8-80.2% post-injury P0). These findings indicate that the force deficit in this muscle injury model results from a failure of the excitation process at some step prior to calcium (Ca2+) release by the sarcoplasmic reticulum. 4. In an attempt to locate the site of failure, intracellular measurements were made in injured muscles to test whether injury to the sarcolemma might have resulted in a shift of the resting membrane potential of the muscle fibre. However, microelectrode measurements of resting membrane potential for muscles in the twenty eccentric contraction protocol (-74.4 +/- 0.6 mV) were not different from muscles in the twenty isometric contraction protocol (-73.4 +/- 1.0 mV). These data suggest that membrane resting conductances were normal and are compatible with the idea that the ability of the injured fibres to conduct action potentials was probably not impaired.

Full text

PDF
487

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AXELSSON J., THESLEFF S. Activation of the contractile mechanism in striated muscle. Acta Physiol Scand. 1958 Oct 28;44(1):55–66. doi: 10.1111/j.1748-1716.1958.tb01608.x. [DOI] [PubMed] [Google Scholar]
  2. Armstrong R. B., Ogilvie R. W., Schwane J. A. Eccentric exercise-induced injury to rat skeletal muscle. J Appl Physiol Respir Environ Exerc Physiol. 1983 Jan;54(1):80–93. doi: 10.1152/jappl.1983.54.1.80. [DOI] [PubMed] [Google Scholar]
  3. BOYD I. A., MARTIN A. R. Membrane constants of mammalian muscle fibres. J Physiol. 1959 Oct;147:450–457. doi: 10.1113/jphysiol.1959.sp006255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brooks S. V., Faulkner J. A. Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol. 1988 Oct;404:71–82. doi: 10.1113/jphysiol.1988.sp017279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byrd S. K. Alterations in the sarcoplasmic reticulum: a possible link to exercise-induced muscle damage. Med Sci Sports Exerc. 1992 May;24(5):531–536. [PubMed] [Google Scholar]
  6. Clarkson P. M., Byrnes W. C., McCormick K. M., Turcotte L. P., White J. S. Muscle soreness and serum creatine kinase activity following isometric, eccentric, and concentric exercise. Int J Sports Med. 1986 Jun;7(3):152–155. doi: 10.1055/s-2008-1025753. [DOI] [PubMed] [Google Scholar]
  7. Connett R. J., Ugol L. M., Hammack M. J., Hays E. T. Twitch potentiation and caffeine contractures in isolated rat soleus muscle. Comp Biochem Physiol C. 1983;74(2):349–354. doi: 10.1016/0742-8413(83)90113-5. [DOI] [PubMed] [Google Scholar]
  8. Crow M. T., Kushmerick M. J. Chemical energetics of slow- and fast-twitch muscles of the mouse. J Gen Physiol. 1982 Jan;79(1):147–166. doi: 10.1085/jgp.79.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davies C. T., White M. J. Muscle weakness following eccentric work in man. Pflugers Arch. 1981 Dec;392(2):168–171. doi: 10.1007/BF00581267. [DOI] [PubMed] [Google Scholar]
  10. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  11. Ferroni A., Blanchi D., Meda E. M. Membrane constants and sodium conductance of a single muscle fibre. Experientia. 1965 Jul 15;21(7):389–390. doi: 10.1007/BF02139757. [DOI] [PubMed] [Google Scholar]
  12. Fridén J., Seger J., Sjöström M., Ekblom B. Adaptive response in human skeletal muscle subjected to prolonged eccentric training. Int J Sports Med. 1983 Aug;4(3):177–183. doi: 10.1055/s-2008-1026031. [DOI] [PubMed] [Google Scholar]
  13. Isaacson A., Hinkes M. J., Taylor S. R. Contracture and twitch potentiation of fast and slow muscles of the rat at 20 and 37 C. Am J Physiol. 1970 Jan;218(1):33–41. doi: 10.1152/ajplegacy.1970.218.1.33. [DOI] [PubMed] [Google Scholar]
  14. Kotsias B. A., Obejero Paz C. A., Muchnik S. Caffeine contractures in denervated slow-twitch and fast-twitch muscles of the rat. Exp Neurol. 1987 Mar;95(3):605–610. doi: 10.1016/0014-4886(87)90302-5. [DOI] [PubMed] [Google Scholar]
  15. Kotsias B. A., Obejero Paz C. A., Muchnik S. Effects of resting membrane potential and intactness of the T-tubules on caffeine contractures in rat skeletal muscle. Life Sci. 1987 Jun 8;40(23):2269–2276. doi: 10.1016/0024-3205(87)90063-4. [DOI] [PubMed] [Google Scholar]
  16. Lieber R. L., Fridén J. Selective damage of fast glycolytic muscle fibres with eccentric contraction of the rabbit tibialis anterior. Acta Physiol Scand. 1988 Aug;133(4):587–588. doi: 10.1111/j.1748-1716.1988.tb08446.x. [DOI] [PubMed] [Google Scholar]
  17. Martonosi A. N. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle. Physiol Rev. 1984 Oct;64(4):1240–1320. doi: 10.1152/physrev.1984.64.4.1240. [DOI] [PubMed] [Google Scholar]
  18. McCully K. K., Faulkner J. A. Injury to skeletal muscle fibers of mice following lengthening contractions. J Appl Physiol (1985) 1985 Jul;59(1):119–126. doi: 10.1152/jappl.1985.59.1.119. [DOI] [PubMed] [Google Scholar]
  19. McCutcheon L. J., Byrd S. K., Hodgson D. R. Ultrastructural changes in skeletal muscle after fatiguing exercise. J Appl Physiol (1985) 1992 Mar;72(3):1111–1117. doi: 10.1152/jappl.1992.72.3.1111. [DOI] [PubMed] [Google Scholar]
  20. Mrozek K. The effect of muscle denervation and immobilization on membrane resting potential. Acta Physiol Pol. 1973;24(3):409–415. [PubMed] [Google Scholar]
  21. Newham D. J., Jones D. A., Clarkson P. M. Repeated high-force eccentric exercise: effects on muscle pain and damage. J Appl Physiol (1985) 1987 Oct;63(4):1381–1386. doi: 10.1152/jappl.1987.63.4.1381. [DOI] [PubMed] [Google Scholar]
  22. Newham D. J., McPhail G., Mills K. R., Edwards R. H. Ultrastructural changes after concentric and eccentric contractions of human muscle. J Neurol Sci. 1983 Sep;61(1):109–122. doi: 10.1016/0022-510x(83)90058-8. [DOI] [PubMed] [Google Scholar]
  23. Newham D. J., Mills K. R., Quigley B. M., Edwards R. H. Pain and fatigue after concentric and eccentric muscle contractions. Clin Sci (Lond) 1983 Jan;64(1):55–62. doi: 10.1042/cs0640055. [DOI] [PubMed] [Google Scholar]
  24. Ogilvie R. W., Armstrong R. B., Baird K. E., Bottoms C. L. Lesions in the rat soleus muscle following eccentrically biased exercise. Am J Anat. 1988 Aug;182(4):335–346. doi: 10.1002/aja.1001820405. [DOI] [PubMed] [Google Scholar]
  25. Savage A. O., Atanga K. G. Caffeine- and potassium-induced contractures of mouse isolated soleus muscle: effects of verapamil, manganese, EGTA and calcium withdrawal. Clin Exp Pharmacol Physiol. 1988 Dec;15(12):901–911. doi: 10.1111/j.1440-1681.1988.tb01035.x. [DOI] [PubMed] [Google Scholar]
  26. Schwane J. A., Armstrong R. B. Effect of training on skeletal muscle injury from downhill running in rats. J Appl Physiol Respir Environ Exerc Physiol. 1983 Sep;55(3):969–975. doi: 10.1152/jappl.1983.55.3.969. [DOI] [PubMed] [Google Scholar]
  27. Shah A. J., Pagala M. K., Subramani V., Venkatachari S. A., Sahgal V. Effect of fiber types, fascicle size and halothane on caffeine contractures in rat muscles. J Neurol Sci. 1988 Dec;88(1-3):247–260. doi: 10.1016/0022-510x(88)90222-5. [DOI] [PubMed] [Google Scholar]
  28. Singh Y. N., Dryden W. F. Isometric contractile properties and caffeine sensitivity of the diaphragm, EDL and soleus in the mouse. Clin Exp Pharmacol Physiol. 1989 Jul;16(7):581–589. doi: 10.1111/j.1440-1681.1989.tb01608.x. [DOI] [PubMed] [Google Scholar]
  29. Stark R. J., O'Doherty J. Intracellular Na+ and K+ activities during insulin stimulation of rat soleus muscle. Am J Physiol. 1982 Mar;242(3):E193–E200. doi: 10.1152/ajpendo.1982.242.3.E193. [DOI] [PubMed] [Google Scholar]
  30. Warren G. L., Hayes D. A., Lowe D. A., Armstrong R. B. Mechanical factors in the initiation of eccentric contraction-induced injury in rat soleus muscle. J Physiol. 1993 May;464:457–475. doi: 10.1113/jphysiol.1993.sp019645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Warren G. L., Hayes D. A., Lowe D. A., Prior B. M., Armstrong R. B. Materials fatigue initiates eccentric contraction-induced injury in rat soleus muscle. J Physiol. 1993 May;464:477–489. doi: 10.1113/jphysiol.1993.sp019646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Warren J. A., Jenkins R. R., Packer L., Witt E. H., Armstrong R. B. Elevated muscle vitamin E does not attenuate eccentric exercise-induced muscle injury. J Appl Physiol (1985) 1992 Jun;72(6):2168–2175. doi: 10.1152/jappl.1992.72.6.2168. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES