Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Sep;469:717–737. doi: 10.1113/jphysiol.1993.sp019839

Baroreceptor reflex-linked changes in catechol metabolism in the rat rostral ventrolateral medulla.

N Rentero 1, K Kitahama 1, L Quintin 1
PMCID: PMC1143896  PMID: 8271225

Abstract

1. Using in vivo voltammetry, this study relates catecholamine metabolism within the rat rostral ventrolateral medulla to the level of mean arterial pressure (MAP) under halothane anaesthesia. 2. A vasopressor region was circumscribed with electrical stimulations in an area located 1000-1700 microns rostral to the obex. A catechol signal was then ascertained within this area. The recording site was surrounded with phenyl-N-methyl-ethanolamine transferase immuno-positive cell bodies. 3. Three levels of decrease of arterial pressure were induced with nitroprusside infusion: -15, -35 and -55 mmHg (n = 5 in each group) from baseline for 30 min. This led to increases in the catechol signal which were inversely related to the degree of hypotension (P < 10(-4) vs. saline for the 35 and 55 mmHg groups, P < 0.05 for the 35 mmHg group as compared to the 15 and 55 mmHg groups following recovery from hypotension). 4. Following sino-aortic deafferentation, nitroprusside-induced hypotension (-35 mmHg) did not lead to any change in the catechol signal in the rostral ventrolateral medulla (n = 5). Furthermore, controlled hypotension induced in intact rats did not evoke any change in the catechol signal recorded in a dopaminergic area of the midbrain, the ventral tegmental area (A10 area; n = 5). 5. An infusion of phenylephrine increased MAP by 35 mmHg from a baseline pressure of 105 mmHg for 30 min and evoked a non-significant decrease in the catechol signal (n = 5). In another group of rats a lower baseline pressure (80 mmHg) was stabilized (n = 5) with a higher concentration of halothane. An identical increment in pressure was then produced by a phenylephrine infusion and led to a significant reduction in the catechol signal (P < 0.05 vs. saline under similar conditions; n = 5). 6. The new findings of this study are that the level of activity of the metabolism of catecholamine in the rostral ventrolateral medulla (i) is continuously related to the level of arterial pressure, (ii) functions close to its resting level under baseline conditions and is primarily engaged during hypotension and (iii) is baroreflex linked. 7. Given the lack of direct evidence for a link between unit activity and catechol metabolism, these changes in catechol activity, recorded continuously in vivo next to adrenergic cell bodies, may represent the biochemical-specific counterpart of changes in the level of electrical unitary activity of presumed adrenergic cardiovascular medullospinal sympathoexcitatory neurons. Therefore, it provides evidence that adrenaline-synthesizing neurons in the rostral ventrolateral medulla respond to baroreceptor inputs.

Full text

PDF
717

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhaskaran D., Freed C. R. Catechol and indole metabolism in rostral ventrolateral medulla change synchronously with changing blood pressure. J Pharmacol Exp Ther. 1989 May;249(2):660–666. [PubMed] [Google Scholar]
  2. Blessing W. W., Willoughby J. O. Tetrodotoxin elevates arterial pressure but not plasma vasopressin when injected into the caudal ventrolateral medulla of the rabbit. Neurosci Lett. 1985 Feb 4;53(3):259–262. doi: 10.1016/0304-3940(85)90547-6. [DOI] [PubMed] [Google Scholar]
  3. Brown D. L., Guyenet P. G. Electrophysiological study of cardiovascular neurons in the rostral ventrolateral medulla in rats. Circ Res. 1985 Mar;56(3):359–369. doi: 10.1161/01.res.56.3.359. [DOI] [PubMed] [Google Scholar]
  4. Chalmers J. P. Brain amines and models of experimental hypertension. Circ Res. 1975 Apr;36(4):469–480. doi: 10.1161/01.res.36.4.469. [DOI] [PubMed] [Google Scholar]
  5. Dev B. R., Mason P. A., Freed C. R. Drug-induced changes in blood pressure lead to changes in extracellular concentrations of epinephrine, dihydroxyphenylacetic acid, and 5-hydroxyindoleacetic acid in the rostral ventrolateral medulla of the rat. J Neurochem. 1992 Apr;58(4):1386–1394. doi: 10.1111/j.1471-4159.1992.tb11354.x. [DOI] [PubMed] [Google Scholar]
  6. Feldberg W., Guertzenstein P. G. A vasodepressor effect of pentobarbitone sodium. J Physiol. 1972 Jul;224(1):83–103. doi: 10.1113/jphysiol.1972.sp009882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gillon J. Y., Labatut R., Renaud B., Pujol J. F. Subcellular distribution of tyrosine hydroxylase in some catecholaminergic rat brain areas determined by a quantitative immunoblot assay. J Neurochem. 1989 Mar;52(3):677–683. doi: 10.1111/j.1471-4159.1989.tb02508.x. [DOI] [PubMed] [Google Scholar]
  8. Gillon J. Y., Quintin L., Ghignone M., Pujol J. F. Clonidine modulates the ventrolateral medullary catechol metabolic hyperactivity induced by hypotension. Brain Res. 1987 Aug 18;418(1):157–163. doi: 10.1016/0006-8993(87)90973-5. [DOI] [PubMed] [Google Scholar]
  9. Gillon J. Y., Richard F., Quintin L., Pujol J. F., Renaud B. Pharmacological and functional evidence for extracellular 3,4-dihydroxyphenylacetic acid as an index of metabolic activity of the adrenergic neurons: an in vivo voltammetry study in the rat rostral ventrolateral medulla. Neuroscience. 1990;37(2):421–430. doi: 10.1016/0306-4522(90)90412-w. [DOI] [PubMed] [Google Scholar]
  10. Gonon F. G., Navarre F., Buda M. J. In vivo monitoring of dopamine release in the rat brain with differential normal pulse voltammetry. Anal Chem. 1984 Mar;56(3):573–575. doi: 10.1021/ac00267a060. [DOI] [PubMed] [Google Scholar]
  11. Guyenet P. G. Central noradrenergic neurons: the autonomic connection. Prog Brain Res. 1991;88:365–380. doi: 10.1016/s0079-6123(08)63823-6. [DOI] [PubMed] [Google Scholar]
  12. Guyenet P. G., Filtz T. M., Donaldson S. R. Role of excitatory amino acids in rat vagal and sympathetic baroreflexes. Brain Res. 1987 Mar 31;407(2):272–284. doi: 10.1016/0006-8993(87)91105-x. [DOI] [PubMed] [Google Scholar]
  13. Haselton J. R., Guyenet P. G. Electrophysiological characterization of putative C1 adrenergic neurons in the rat. Neuroscience. 1989;30(1):199–214. doi: 10.1016/0306-4522(89)90365-5. [DOI] [PubMed] [Google Scholar]
  14. Howe P. R., Costa M., Furness J. B., Chalmers J. P. Simultaneous demonstration of phenylethanolamine N-methyltransferase immunofluorescent and catecholamine fluorescent nerve cell bodies in the rat medulla oblongata. Neuroscience. 1980;5(12):2229–2238. doi: 10.1016/0306-4522(80)90139-6. [DOI] [PubMed] [Google Scholar]
  15. Kalia M., Fuxe K. Rat medulla oblongata. I. Cytoarchitectonic considerations. J Comp Neurol. 1985 Mar 15;233(3):285–307. doi: 10.1002/cne.902330302. [DOI] [PubMed] [Google Scholar]
  16. Kalia M., Woodward D. J., Smith W. K., Fuxe K. Rat medulla oblongata. IV. Topographical distribution of catecholaminergic neurons with quantitative three-dimensional computer reconstruction. J Comp Neurol. 1985 Mar 15;233(3):350–364. doi: 10.1002/cne.902330305. [DOI] [PubMed] [Google Scholar]
  17. Kannan H., Osaka T., Kasai M., Okuya S., Yamashita H. Electrophysiological properties of neurons in the caudal ventrolateral medulla projecting to the paraventricular nucleus of the hypothalamus in rats. Brain Res. 1986 Jun 25;376(2):342–350. doi: 10.1016/0006-8993(86)90197-6. [DOI] [PubMed] [Google Scholar]
  18. Kitahama K., Denoroy L., Berod A., Jouvet M. Distribution of PNMT-immunoreactive neurons in the cat medulla oblongata. Brain Res Bull. 1986 Aug;17(2):197–208. doi: 10.1016/0361-9230(86)90116-4. [DOI] [PubMed] [Google Scholar]
  19. McAllen R. M., Blessing W. W. Neurons (presumably A1-cells) projecting from the caudal ventrolateral medulla to the region of the supraoptic nucleus respond to baroreceptor inputs in the rabbit. Neurosci Lett. 1987 Jan 27;73(3):247–252. doi: 10.1016/0304-3940(87)90253-9. [DOI] [PubMed] [Google Scholar]
  20. Mermet C., Gonon F. In vivo voltammetric monitoring of noradrenaline release and catecholamine metabolism in the hypothalamic paraventricular nucleus. Neuroscience. 1986 Nov;19(3):829–838. doi: 10.1016/0306-4522(86)90301-5. [DOI] [PubMed] [Google Scholar]
  21. Mermet C., Quintin L. Effect of clonidine on catechol metabolism in the rostral ventrolateral medulla: an in vivo electrochemical study. Eur J Pharmacol. 1991 Oct 29;204(1):105–107. doi: 10.1016/0014-2999(91)90842-e. [DOI] [PubMed] [Google Scholar]
  22. Milne B., Quintin L., Gillon J. Y. Changes in catecholamine metabolism in the rostral ventrolateral medulla following halothane and nitroprusside-induced hypotension: an in vivo electrochemical study. Brain Res. 1990 Jun 4;518(1-2):143–148. doi: 10.1016/0006-8993(90)90965-e. [DOI] [PubMed] [Google Scholar]
  23. Palkovits M., Záborszky L. Neuroanatomy of central cardiovascular control. Nucleus tractus solitarii: afferent and efferent neuronal connections in relation to the baroreceptor reflex arc. Prog Brain Res. 1977;47:9–34. doi: 10.1016/S0079-6123(08)62709-0. [DOI] [PubMed] [Google Scholar]
  24. Quintin L., Ghignone M., Pujol J. F. The ability of the alpha 2-adrenergic agonist clonidine to suppress central noradrenergic hyperactivity secondary to hemodynamic or environmental stimuli. J Cardiovasc Pharmacol. 1987;10 (Suppl 12):S128–S134. [PubMed] [Google Scholar]
  25. Quintin L., Gillon J. Y., Ghignone M., Renaud B., Pujol J. F. Baroreflex-linked variations of catecholamine metabolism in the caudal ventrolateral medulla: an in vivo electrochemical study. Brain Res. 1987 Nov 10;425(2):319–336. doi: 10.1016/0006-8993(87)90515-4. [DOI] [PubMed] [Google Scholar]
  26. Quintin L., Gillon J. Y., Saunier C. F., Chouvet G., Ghignone M. Continuous volume infusion improves circulatory stability in anesthesized rats. J Neurosci Methods. 1989 Oct;30(1):77–83. doi: 10.1016/0165-0270(89)90077-0. [DOI] [PubMed] [Google Scholar]
  27. Quintin L., Hilaire G., Pujol J. F. Variations in 3,4-dihydroxyphenylacetic acid concentration are correlated to single cell firing changes in the rat locus coeruleus. Neuroscience. 1986 Aug;18(4):889–899. doi: 10.1016/0306-4522(86)90107-7. [DOI] [PubMed] [Google Scholar]
  28. Siesjö B. K., Zwetnow N. N. The effect of hypovolemic hypotension on extra- and intracellular acid-base parameters and energy metabolites in the rat brain. Acta Physiol Scand. 1970 May;79(1):114–124. doi: 10.1111/j.1748-1716.1970.tb04707.x. [DOI] [PubMed] [Google Scholar]
  29. Sun M. K., Guyenet P. G. Effect of clonidine and gamma-aminobutyric acid on the discharges of medullo-spinal sympathoexcitatory neurons in the rat. Brain Res. 1986 Mar 12;368(1):1–17. doi: 10.1016/0006-8993(86)91036-x. [DOI] [PubMed] [Google Scholar]
  30. Sun M. K., Guyenet P. G. Excitation of rostral medullary pacemaker neurons with putative sympathoexcitatory function by cyclic AMP and beta-adrenoceptor agonists 'in vitro'. Brain Res. 1990 Mar 12;511(1):30–40. doi: 10.1016/0006-8993(90)90222-w. [DOI] [PubMed] [Google Scholar]
  31. Sun M. K., Spyer K. M. Nociceptive inputs into rostral ventrolateral medulla-spinal vasomotor neurones in rats. J Physiol. 1991 May;436:685–700. doi: 10.1113/jphysiol.1991.sp018573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sun M. K., Young B. S., Hackett J. T., Guyenet P. G. Rostral ventrolateral medullary neurons with intrinsic pacemaker properties are not catecholaminergic. Brain Res. 1988 Jun 7;451(1-2):345–349. doi: 10.1016/0006-8993(88)90781-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES