Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1993 Sep;469:753–765. doi: 10.1113/jphysiol.1993.sp019841

Functional coupling between the active transport of glucose and the secretion of intestinal neurotensin in rats.

T Dakka 1, J C Cuber 1, J A Chayvialle 1
PMCID: PMC1143898  PMID: 7505826

Abstract

1. In this study, the mechanisms involved in the release of neurotensin-like immunoreactivity (NTLI) by glucose were investigated with the isolated, vascularly perfused rat jejunoileum preparation. 2. Luminal infusion of glucose (1-250 mM) produced a sharp and sustained release of NTLI in the intestinal venous effluent. The first significant response was observed with 5 mM glucose and the release reached a maximum under 250 mM glucose with a plateau secretion at 500% of basal. 3. There was no significant difference in the ability of galactose and 3-O-methylglucose to release NTLI when compared to glucose, but alpha-methylglucose, mannose, 2-deoxyglucose and fructose did not stimulate NTLI release. 4. Luminal infusion of 5 mM phloridzin reduced the glucose-induced release of NTLI by 90%. Intra-arterial infusion of glucose (25 mM) or of phloretin (20 microM) had no significant effect on the glucose-evoked NTLI secretion. 5. Intra-arterial infusion of ouabain (1 mM) produced a dramatic increase (at about 1500% of basal) in portal NTLI although it drastically reduced intestinal absorption of glucose. 6. Intra-arterial infusion of tetrodotoxin (1 microM), atropine (10 microM), verapamil (50 microM) or nifedipine (50 microM) did not modify the glucose-induced NTLI secretion. 7. Intra-arterial infusion of forskolin (2-20 microM) evoked a prompt and well-sustained secretion of NTLI which was increased to a mean value of 800% of basal with the highest dose tested. 3-Isobutyl-1-methylxanthine (IBMX, 10-100 microM) also stimulated the secretion of NTLI (maximal increase at 725% of basal at 100 microM). In contrast, intra-arterial infusion of 4-beta-phorbol 12-myristate, 13-acetate (PMA, 0.05-0.5 microM) had no effect on NTLI release. 8. IBMX (10-100 microM) synergistically enhanced NTLI responses induced by 250 mM glucose; the integrated response of NTLI release was 3- to 5-fold higher than the sum of individual responses produced by the same stimulants given separately. 9. It is concluded that the carbohydrate-induced NTLI release is related to the active, sodium-dependent hexose transport, but not to the carbohydrate catabolic pathway. Furthermore, the intramural nerves and L-type calcium channels are not involved in the glucose-induced NTLI secretion. Finally, the secretory activity of the intestinal N cell seems to be mainly stimulated through a cAMP-dependent pathway.

Full text

PDF
753

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber D. L., Buchan A. M., Walsh J. H., Soll A. H. Regulation of neurotensin release from canine enteric primary cell cultures. Am J Physiol. 1986 Mar;250(3 Pt 1):G385–G390. doi: 10.1152/ajpgi.1986.250.3.G385. [DOI] [PubMed] [Google Scholar]
  2. Barber D. L., Cacace A. M., Raucci D. T., Ganz M. B. Fatty acids stereospecifically stimulate neurotensin release and increase [Ca2+]i in enteric endocrine cells. Am J Physiol. 1991 Sep;261(3 Pt 1):G497–G503. doi: 10.1152/ajpgi.1991.261.3.G497. [DOI] [PubMed] [Google Scholar]
  3. Barber D. L., Gregor M., Soll A. H. Somatostatin and muscarinic inhibition of canine enteric endocrine cells: cellular mechanisms. Am J Physiol. 1987 Nov;253(5 Pt 1):G684–G689. doi: 10.1152/ajpgi.1987.253.5.G684. [DOI] [PubMed] [Google Scholar]
  4. Brot-Laroche E., Dao M. T., Alcalde A. I., Delhomme B., Triadou N., Alvarado F. Independent modulation by food supply of two distinct sodium-activated D-glucose transport systems in the guinea pig jejunal brush-border membrane. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6370–6373. doi: 10.1073/pnas.85.17.6370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brot-Laroche E., Supplisson S., Delhomme B., Alcalde A. I., Alvarado F. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside. Biochim Biophys Acta. 1987 Nov 2;904(1):71–80. doi: 10.1016/0005-2736(87)90088-5. [DOI] [PubMed] [Google Scholar]
  6. Burant C. F., Takeda J., Brot-Laroche E., Bell G. I., Davidson N. O. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem. 1992 Jul 25;267(21):14523–14526. [PubMed] [Google Scholar]
  7. Carraway R., Leeman S. E. Characterization of radioimmunoassayable neurotensin in the rat. Its differential distribution in the central nervous system, small intestine, and stomach. J Biol Chem. 1976 Nov 25;251(22):7045–7052. [PubMed] [Google Scholar]
  8. Carraway R., Leeman S. E. The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J Biol Chem. 1973 Oct 10;248(19):6854–6861. [PubMed] [Google Scholar]
  9. Cuber J. C., Aucouturier S., Bernard C., Chayvialle J. A. Role of cyclic nucleotides and calcium in the nutrient-induced release of cholecystokinin-like immunoreactivity in rats. J Physiol. 1992 Apr;449:37–48. doi: 10.1113/jphysiol.1992.sp019073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cuber J. C., Herrmann C., Kitabgi P., Bosshard A., Bernard C., De Nadai F., Chayvialle J. A. Neuromedin-N is not released with neurotensin from rat ileum. Endocrinology. 1990 Mar;126(3):1584–1592. doi: 10.1210/endo-126-3-1584. [DOI] [PubMed] [Google Scholar]
  11. Cuber J. C., Philippe C., Abello J., Corring T., Levenez F., Chayvialle J. A. Plasma neurotensin in the conscious pig: release by individual food components and effects on exocrine pancreas secretion. Pancreas. 1990 May;5(3):306–313. [PubMed] [Google Scholar]
  12. Cuber J. C., Vilas F., Charles N., Bernard C., Chayvialle J. A. Bombesin and nutrients stimulate release of CCK through distinct pathways in the rat. Am J Physiol. 1989 Jun;256(6 Pt 1):G989–G996. doi: 10.1152/ajpgi.1989.256.6.G989. [DOI] [PubMed] [Google Scholar]
  13. Davidson N. O., Hausman A. M., Ifkovits C. A., Buse J. B., Gould G. W., Burant C. F., Bell G. I. Human intestinal glucose transporter expression and localization of GLUT5. Am J Physiol. 1992 Mar;262(3 Pt 1):C795–C800. doi: 10.1152/ajpcell.1992.262.3.C795. [DOI] [PubMed] [Google Scholar]
  14. Ferraris R. P., Yasharpour S., Lloyd K. C., Mirzayan R., Diamond J. M. Luminal glucose concentrations in the gut under normal conditions. Am J Physiol. 1990 Nov;259(5 Pt 1):G822–G837. doi: 10.1152/ajpgi.1990.259.5.G822. [DOI] [PubMed] [Google Scholar]
  15. Flaten O., Hanssen L. E. Concentration of neurotensin in human plasma after glucose, meals and lipids. Acta Physiol Scand. 1982 Feb;114(2):311–313. doi: 10.1111/j.1748-1716.1982.tb06988.x. [DOI] [PubMed] [Google Scholar]
  16. Gallavan R. H., Jr, Shaw C., Murphy R. F., Buchanan K. D., Joffe S. N., Jacobson E. D. Effects of micellar oleic acid on canine jejunal blood flow and neurotensin release. Am J Physiol. 1986 Nov;251(5 Pt 1):G649–G655. doi: 10.1152/ajpgi.1986.251.5.G649. [DOI] [PubMed] [Google Scholar]
  17. Gill S. S., Lee Y. C., Ghatei M. A., Ghiglione M., Uttenthal L. O., Bloom S. R. The use of a rat isolated ileal preparation to investigate the release of neurotensin. Clin Exp Pharmacol Physiol. 1984 Sep-Oct;11(5):457–465. doi: 10.1111/j.1440-1681.1984.tb00853.x. [DOI] [PubMed] [Google Scholar]
  18. Go V. L., Demol P. Role of nutrients in the gastrointestinal release of immunoreactive neurotensin. Peptides. 1981;2 (Suppl 2):267–269. doi: 10.1016/0196-9781(81)90043-7. [DOI] [PubMed] [Google Scholar]
  19. Guo Y. S., Thompson J. C., Singh P. Role of Ca2+ in bombesin-stimulated release of gastrin and somatostatin from isolated perfused rat stomach. Am J Physiol. 1988 Nov;255(5 Pt 1):G627–G632. doi: 10.1152/ajpgi.1988.255.5.G627. [DOI] [PubMed] [Google Scholar]
  20. Hammer R. A., Carraway R. E., Leeman S. E. Elevation of plasma neurotensinlike immunoreactivity after a meal. Characterization of the elevated components. J Clin Invest. 1982 Jul;70(1):74–81. doi: 10.1172/JCI110605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hediger M. A., Coady M. J., Ikeda T. S., Wright E. M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. 1987 Nov 26-Dec 2Nature. 330(6146):379–381. doi: 10.1038/330379a0. [DOI] [PubMed] [Google Scholar]
  22. Herrmann C., Cuber J. C., Abello J., Dakka T., Bernard C., Chayvialle J. A. Release of ileal neurotensin in the rat by neurotransmitters and neuropeptides. Regul Pept. 1991 Feb 1;32(2):181–192. doi: 10.1016/0167-0115(91)90045-i. [DOI] [PubMed] [Google Scholar]
  23. Herrmann C., Cuber J. C., Bernard C., Chayvialle J. A. Cooperative effects of bombesin, substance P and methacholine on the release of intestinal neurotensin in rats. Regul Pept. 1992 Jan 23;37(2):123–134. doi: 10.1016/0167-0115(92)90661-d. [DOI] [PubMed] [Google Scholar]
  24. Holst Pedersen J., Knuthsen S., Bernabei M., Orskov C., Holst J. J. Secretion of neurotensin from isolated perfused porcine ileum. Regul Pept. 1988 May;21(1-2):13–19. doi: 10.1016/0167-0115(88)90086-9. [DOI] [PubMed] [Google Scholar]
  25. Kayano T., Burant C. F., Fukumoto H., Gould G. W., Fan Y. S., Eddy R. L., Byers M. G., Shows T. B., Seino S., Bell G. I. Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). J Biol Chem. 1990 Aug 5;265(22):13276–13282. [PubMed] [Google Scholar]
  26. Mashford M. L., Nilsson G., Rökaeus A., Rosell S. The effect of food ingestion on circulating neurotensin-like immunoreactivity (NTLI) in the human. Acta Physiol Scand. 1978 Oct;104(2):244–246. doi: 10.1111/j.1748-1716.1978.tb06275.x. [DOI] [PubMed] [Google Scholar]
  27. Pedersen J. H., Stadil F., Fahrenkrug J. Preparation of 125I-(Tyr 3)- and 125I-(Tyr 11)- neurotensin for radioimmunoassay. Scand J Clin Lab Invest. 1983 Oct;43(6):483–491. doi: 10.1080/00365518309168435. [DOI] [PubMed] [Google Scholar]
  28. Read N. W., McFarlane A., Kinsman R. I., Bates T. E., Blackhall N. W., Farrar G. B., Hall J. C., Moss G., Morris A. P., O'Neill B. Effect of infusion of nutrient solutions into the ileum on gastrointestinal transit and plasma levels of neurotensin and enteroglucagon. Gastroenterology. 1984 Feb;86(2):274–280. [PubMed] [Google Scholar]
  29. Rosell S., Rökaeus A. The effect of ingestion of amino acids, glucose and fat on circulating neurotensin-like immunoreactivity (NTLI) in man. Acta Physiol Scand. 1979 Nov;107(3):263–267. doi: 10.1111/j.1748-1716.1979.tb06472.x. [DOI] [PubMed] [Google Scholar]
  30. Rökaeus A. Increase in neurotensin-like immunoreactivity in rat plasma after administration of calcium, bombesin and fat and its inhibition by somatostatin. Acta Physiol Scand. 1984 Nov;122(3):261–267. doi: 10.1111/j.1748-1716.1984.tb07509.x. [DOI] [PubMed] [Google Scholar]
  31. Rökaeus A., Yanaihara N., McDonald T. J. Increased concentration of neurotensin-like immunoreactivity (NTLI) in rat plasma after administration of bombesin and bombesin-related peptides (porcine and chicken gastrin-releasing peptides). Acta Physiol Scand. 1982 Apr;114(4):605–610. doi: 10.1111/j.1748-1716.1982.tb07031.x. [DOI] [PubMed] [Google Scholar]
  32. Sugano K., Park J., Soll A. H., Yamada T. Stimulation of gastrin release by bombesin and canine gastrin-releasing peptides. Studies with isolated canine G cells in primary culture. J Clin Invest. 1987 Mar;79(3):935–942. doi: 10.1172/JCI112904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sugano K., Park J., Soll A., Yamada T. Phorbol esters stimulate somatostatin release from cultured cells. Am J Physiol. 1986 May;250(5 Pt 1):G686–G690. doi: 10.1152/ajpgi.1986.250.5.G686. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES