Abstract
1. The effects of sympathetic nerve stimulation on the generation of pacemaker action potentials, recorded from the sino-atrial node of the guinea-pig, were determined by using intracellular recording techniques. 2. Trains of stimuli applied to the right stellate ganglion led to an increase in heart rate after a delay of a few seconds. During the initial phase of the tachycardia the rate of discharge of pacemaker action potentials increased and the rate of diastolic depolarization increased, but both the peak diastolic potential and the maximum rate of rise of the action potentials were reduced. During the later phase of the tachycardia the peak diastolic potential, the amplitude of the action potentials, the maximum rate of rise and the rate of repolarization of the action potentials were increased. 3. When membrane potential recordings were made from sino-atrial node cells, in which beating had been abolished by adding the organic calcium antagonist nifedipine, sympathetic nerve stimulation initiated excitatory junction potentials (EJPs) which had time courses similar to those of the tachycardias recorded from beating preparations. 4. Although both the tachycardias produced by either sympathetic nerve stimulation or added noradrenaline were largely abolished by beta-adrenoceptor antagonists, the membrane potential changes recorded during the responses to sympathetic nerve stimulation or added noradrenaline were different. Bath-applied noradrenaline caused a tachycardia which was associated with an increase in the amplitudes of pacemaker action potentials, an increase in the peak diastolic potential and a shortening in the duration of pacemaker action potentials. 5. The addition of agents which cause the accumulation of cyclic AMP in the cytoplasm of the cells produced a tachycardia which was associated with a similar sequence of changes in the membrane potentials to those produced by added noradrenaline; again the membrane potential changes produced by these agents differed from those produced by sympathetic nerve stimulation. 6. The results are discussed in relation to the idea that neurally released noradrenaline activates a set of receptors which cause tachycardia by increasing inward current flow during diastole, whereas added noradrenaline activates a set of receptors that are linked to a cyclic AMP-dependent pathway which modifies the properties of some of the voltage-dependent channels involved in pacemaking activity.
Full text
PDF




















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bramich N. J., Brock J. A., Edwards F. R., Hirst G. D. Responses to sympathetic nerve stimulation of the sinus venosus of the toad. J Physiol. 1993 Feb;461:403–430. doi: 10.1113/jphysiol.1993.sp019520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bramich N. J., Edwards F. R., Hirst G. D. Sympathetic nerve stimulation and applied transmitters on the sinus venosus of the toad. J Physiol. 1990 Oct;429:349–375. doi: 10.1113/jphysiol.1990.sp018261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown H. F. Electrophysiology of the sinoatrial node. Physiol Rev. 1982 Apr;62(2):505–530. doi: 10.1152/physrev.1982.62.2.505. [DOI] [PubMed] [Google Scholar]
- Bywater R. A., Campbell G. D., Edwards F. R., Hirst G. D. Effects of vagal stimulation and applied acetylcholine on the arrested sinus venosus of the toad. J Physiol. 1990 Jun;425:1–27. doi: 10.1113/jphysiol.1990.sp018089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bywater R. A., Campbell G., Edwards F. R., Hirst G. D., O'Shea J. E. The effects of vagal stimulation and applied acetylcholine on the sinus venosus of the toad. J Physiol. 1989 Aug;415:35–56. doi: 10.1113/jphysiol.1989.sp017710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell G. D., Edwards F. R., Hirst G. D., O'Shea J. E. Effects of vagal stimulation and applied acetylcholine on pacemaker potentials in the guinea-pig heart. J Physiol. 1989 Aug;415:57–68. doi: 10.1113/jphysiol.1989.sp017711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEMELLO W. C. ROLE OF CHLORIDE IONS IN CARDIAC ACTION AND PACEMAKER POTENTIALS. Am J Physiol. 1963 Sep;205:567–575. doi: 10.1152/ajplegacy.1963.205.3.567. [DOI] [PubMed] [Google Scholar]
- Denyer J. C., Brown H. F. Pacemaking in rabbit isolated sino-atrial node cells during Cs+ block of the hyperpolarization-activated current if. J Physiol. 1990 Oct;429:401–409. doi: 10.1113/jphysiol.1990.sp018264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denyer J. C., Brown H. F. Rabbit sino-atrial node cells: isolation and electrophysiological properties. J Physiol. 1990 Sep;428:405–424. doi: 10.1113/jphysiol.1990.sp018219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiFrancesco D. The cardiac hyperpolarizing-activated current, if. Origins and developments. Prog Biophys Mol Biol. 1985;46(3):163–183. doi: 10.1016/0079-6107(85)90008-2. [DOI] [PubMed] [Google Scholar]
- Dooley D. J., Bittiger H., Reymann N. C. CGP 20712 A: a useful tool for quantitating beta 1- and beta 2-adrenoceptors. Eur J Pharmacol. 1986 Oct 14;130(1-2):137–139. doi: 10.1016/0014-2999(86)90193-7. [DOI] [PubMed] [Google Scholar]
- Dukes I. D., Vaughan Williams E. M. Effects of selective alpha 1-, alpha 2-, beta 1-and beta 2-adrenoceptor stimulation on potentials and contractions in the rabbit heart. J Physiol. 1984 Oct;355:523–546. doi: 10.1113/jphysiol.1984.sp015436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egan T. M., Noble D., Noble S. J., Powell T., Twist V. W., Yamaoka K. On the mechanism of isoprenaline- and forskolin-induced depolarization of single guinea-pig ventricular myocytes. J Physiol. 1988 Jun;400:299–320. doi: 10.1113/jphysiol.1988.sp017121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Godfraind T., Miller R., Wibo M. Calcium antagonism and calcium entry blockade. Pharmacol Rev. 1986 Dec;38(4):321–416. [PubMed] [Google Scholar]
- HUTTER O. F., TRAUTWEIN W. Vagal and sympathetic effects on the pacemaker fibers in the sinus venosus of the heart. J Gen Physiol. 1956 May 20;39(5):715–733. doi: 10.1085/jgp.39.5.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartzell H. C. Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog Biophys Mol Biol. 1988;52(3):165–247. doi: 10.1016/0079-6107(88)90014-4. [DOI] [PubMed] [Google Scholar]
- Hopkins S. V. The action of ATP in the guinea-pig heart. Biochem Pharmacol. 1973 Feb 1;22(3):335–339. doi: 10.1016/0006-2952(73)90414-0. [DOI] [PubMed] [Google Scholar]
- Hoyle C. H., Burnstock G. Evidence that ATP is a neurotransmitter in the frog heart. Eur J Pharmacol. 1986 May 27;124(3):285–289. doi: 10.1016/0014-2999(86)90229-3. [DOI] [PubMed] [Google Scholar]
- Jones C. R., Molenaar P., Summers R. J. New views of human cardiac beta-adrenoceptors. J Mol Cell Cardiol. 1989 May;21(5):519–535. doi: 10.1016/0022-2828(89)90791-8. [DOI] [PubMed] [Google Scholar]
- Kaumann A. J. The beta 1-adrenoceptor antagonist CGP 20712 A unmasks beta 2-adrenoceptors activated by (-)-adrenaline in rat sinoatrial node. Naunyn Schmiedebergs Arch Pharmacol. 1986 Apr;332(4):406–409. doi: 10.1007/BF00500096. [DOI] [PubMed] [Google Scholar]
- Klemm M., Hirst G. D., Campbell G. Structure of autonomic neuromuscular junctions in the sinus venosus of the toad. J Auton Nerv Syst. 1992 Jun 15;39(2):139–150. doi: 10.1016/0165-1838(92)90054-k. [DOI] [PubMed] [Google Scholar]
- Large W. A. The effect of chloride removal on the responses of the isolated rat anococcygeus muscle to alpha 1-adrenoceptor stimulation. J Physiol. 1984 Jul;352:17–29. doi: 10.1113/jphysiol.1984.sp015275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molenaar P., Canale E., Summers R. J. Autoradiographic localization of beta-1 and beta-2 adrenoceptors in guinea pig atrium and regions of the conducting system. J Pharmacol Exp Ther. 1987 Jun;241(3):1048–1064. [PubMed] [Google Scholar]
- Molenaar P., Summers R. J. Characterization of beta-1 and beta-2 adrenoceptors in guinea pig atrium: functional and receptor binding studies. J Pharmacol Exp Ther. 1987 Jun;241(3):1041–1047. [PubMed] [Google Scholar]
- Morris J. L., Gibbins I. L., Clevers J. Resistance of adrenergic neurotransmission in the toad heart to adrenoceptor blockade. Naunyn Schmiedebergs Arch Pharmacol. 1981;317(4):331–338. doi: 10.1007/BF00501315. [DOI] [PubMed] [Google Scholar]
- Noble D. The surprising heart: a review of recent progress in cardiac electrophysiology. J Physiol. 1984 Aug;353:1–50. doi: 10.1113/jphysiol.1984.sp015320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Donnell S. R., Wanstall J. C. Pharmacological experiments demonstrate that toad (Bufo marinus) atrial beta-adrenoceptors are not identical with mammalian beta 2- or beta 1-adrenoceptors. Life Sci. 1982 Aug 16;31(7):701–708. doi: 10.1016/0024-3205(82)90772-x. [DOI] [PubMed] [Google Scholar]
- Shibata E. F., Giles W., Pollack G. H. Threshold effects of acetylcholine on primary pacemaker cells of the rabbit sino-atrial node. Proc R Soc Lond B Biol Sci. 1985 Jan 22;223(1232):355–378. doi: 10.1098/rspb.1985.0006. [DOI] [PubMed] [Google Scholar]
- Teelucksingh S., Steer C. R., Thompson C. J., Seckl J. R., Douglas N. J., Edwards C. R. Hypothalamic syndrome and central sleep apnoea associated with toluene exposure. Q J Med. 1991 Feb;78(286):185–190. [PubMed] [Google Scholar]
- Toda N., Shimamoto K. The influence of sympathetic stimulation on transmembrane potentials in the S-A node. J Pharmacol Exp Ther. 1968 Feb;159(2):298–305. [PubMed] [Google Scholar]
- Van Helden D. F. An alpha-adrenoceptor-mediated chloride conductance in mesenteric veins of the guinea-pig. J Physiol. 1988 Jul;401:489–501. doi: 10.1113/jphysiol.1988.sp017174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Helden D. F. Electrophysiology of neuromuscular transmission in guinea-pig mesenteric veins. J Physiol. 1988 Jul;401:469–488. doi: 10.1113/jphysiol.1988.sp017173. [DOI] [PMC free article] [PubMed] [Google Scholar]
