Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Jul 15;221(2):297–302. doi: 10.1042/bj2210297

Conversion of oxyhaemoglobin into methaemoglobin by ferricytochrome b5.

M R Mauk, L S Reid, A G Mauk
PMCID: PMC1144039  PMID: 6477474

Abstract

Ferricytochrome b5 was found to convert oxyhaemoglobin into methaemoglobin under conditions previously found to be optimal for complex-formation between ferricytochrome b5 and methaemoglobin [Mauk & Mauk (1982) Biochemistry 21, 4730-4734]. As this reaction is completely inhibited by CO, it is proposed that oxyhaemoglobin is oxidized after O2 dissociation, as has been suggested for the oxidation of oxyhaemoglobin by inorganic complexes. From the present analysis, ferricytochrome b5 seems unlikely to contribute significantly to methaemoglobin formation in vivo. Nevertheless, this observation provides a relatively convenient means of investigating the mechanism by which these two proteins interact.

Full text

PDF
297

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTONINI E., BRUNORI M., WYMAN J. STUDIES ON THE OXIDATION-REDUCTION POTENTIALS OF HEME PROTEINS. IV. THE KINETICS OF OXIDATION OF HEMOGLOBIN AND MYOGLOBIN BY FERRICYANIDE. Biochemistry. 1965 Mar;4:545–551. doi: 10.1021/bi00879a026. [DOI] [PubMed] [Google Scholar]
  2. ANTONINI E., WYMAN J., BRUNORI M., TAYLOR J. F., ROSSI-FANELLI A., CAPUTO A. STUDIES ON THE OXIDATION-REDUCTION POTENTIALS OF HEME PROTEINS. I. HUMAN HEMOGLOBIN. J Biol Chem. 1964 Mar;239:907–912. [PubMed] [Google Scholar]
  3. Berman M. C., Adnams C. M., Ivanetich K. M., Kench J. E. Autoxidation of soluble trypsin-cleaved microsomal ferrocytochrome b5 and formation of superoxide radicals. Biochem J. 1976 Jul 1;157(1):237–246. doi: 10.1042/bj1570237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boeker E. A. Initial rates. A new plot. Biochem J. 1982 Apr 1;203(1):117–123. doi: 10.1042/bj2030117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hultquist D. E., Passon P. G. Catalysis of methaemoglobin reduction by erythrocyte cytochrome B5 and cytochrome B5 reductase. Nat New Biol. 1971 Feb 24;229(8):252–254. doi: 10.1038/newbio229252a0. [DOI] [PubMed] [Google Scholar]
  6. Imai K., Yonetani T. PH dependence of the Adair constants of human hemoglobin. Nonuniform contribution of successive oxygen bindings to the alkaline Bohr effect. J Biol Chem. 1975 Mar 25;250(6):2227–2231. [PubMed] [Google Scholar]
  7. Kuma F. Properties of methemoglobin reductase and kinetic study of methemoglobin reduction. J Biol Chem. 1981 Jun 10;256(11):5518–5523. [PubMed] [Google Scholar]
  8. Lanir A., Caughey W. S., Charache S. Oxidation of carbonyl hemoglobins by ferricyanide. Hemoglobins A, Osler (beta 145 Tyr replaced by Asp) and Zurich (beta 63 His replaced by Arg). Eur J Biochem. 1982 Nov 15;128(2-3):521–525. [PubMed] [Google Scholar]
  9. Linder R. E., Records R., Barth G., Bunnenberg E., Djerassi C., Hedlund B. E., Rosenberg A., Benson E. S., Seamans L., Moscowitz A. Partial reduction of aquomethemoglobin on a Sephadex G-25 column as detected by magnetic circular dichroism spectroscopy and revised extinction coefficients for aquomethemoglobin. Anal Biochem. 1978 Oct 15;90(2):474–480. doi: 10.1016/0003-2697(78)90140-9. [DOI] [PubMed] [Google Scholar]
  10. Mauk M. R., Mauk A. G. Interaction between cytochrome b5 and human methemoglobin. Biochemistry. 1982 Sep 14;21(19):4730–4734. doi: 10.1021/bi00262a032. [DOI] [PubMed] [Google Scholar]
  11. Mauk M. R., Reid L. S., Mauk A. G. Spectrophotometric analysis of the interaction between cytochrome b5 and cytochrome c. Biochemistry. 1982 Apr 13;21(8):1843–1846. doi: 10.1021/bi00537a021. [DOI] [PubMed] [Google Scholar]
  12. OZOLS J., STRITTMATTER P. THE INTERACTION OF PORPHYRINS AND METALLOPORHYRINS WITH APOCYTOCHROME BETA-5. J Biol Chem. 1964 Apr;239:1018–1023. [PubMed] [Google Scholar]
  13. Olson J. S. Stopped-flow, rapid mixing measurements of ligand binding to hemoglobin and red cells. Methods Enzymol. 1981;76:631–651. doi: 10.1016/0076-6879(81)76148-2. [DOI] [PubMed] [Google Scholar]
  14. Poulos T. L., Mauk A. G. Models for the complexes formed between cytochrome b5 and the subunits of methemoglobin. J Biol Chem. 1983 Jun 25;258(12):7369–7373. [PubMed] [Google Scholar]
  15. Sannes L. J., Hultquist D. E. Effects of hemolysate concentration, ionic strength and cytochrome b5 concentration on the rate of methemoglobin reduction in hemolysates of human erythrocytes. Biochim Biophys Acta. 1978 Dec 18;544(3):547–554. doi: 10.1016/0304-4165(78)90329-x. [DOI] [PubMed] [Google Scholar]
  16. Slaughter S. R., Williams C. H., Jr, Hultquist D. E. Demonstration that bovine erythrocyte cytochrome b5 is the hydrophilic segment of liver microsomal cytochrome b5. Biochim Biophys Acta. 1982 Jul 26;705(2):228–237. doi: 10.1016/0167-4838(82)90182-0. [DOI] [PubMed] [Google Scholar]
  17. Williams R. C., Jr, Tsay K. Y. A convenient chromatographic method for the preparation of human hemoglobin. Anal Biochem. 1973 Jul;54(1):137–145. doi: 10.1016/0003-2697(73)90256-x. [DOI] [PubMed] [Google Scholar]
  18. Yamada T., Marini C. P., Cassatt J. C. Oxidation-reduction reactions of hemoglobin A, hemoglobin M Iwate, and hemoglobin M Hyde Park. Biochemistry. 1978 Jan 24;17(2):231–236. doi: 10.1021/bi00595a006. [DOI] [PubMed] [Google Scholar]
  19. Yoneda G. S., Holwerda R. A. Kinetics of the oxidation of Rhus vernicifera stellacyanin by the Co(EDTA)-- ion. Bioinorg Chem. 1978;8(2):139–159. doi: 10.1016/s0006-3061(00)80240-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES