Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Jul 15;221(2):317–324. doi: 10.1042/bj2210317

Starvation-induced changes of palmitate metabolism and insulin secretion in isolated rat islets stimulated by glucose.

J Tamarit-Rodríguez, E Vara, J Tamarit
PMCID: PMC1144042  PMID: 6383345

Abstract

The influence of 48 h starvation on glucose-induced changes of palmitate metabolism and insulin release in isolated rat islets was investigated. (1) Islet insulin response to 20 mM-glucose was abolished after 48 h starvation, and it was restored by 0.25 mM-2-bromostearate, an inhibitor of fatty acid oxidation. (2) The increase in glucose concentration from 3 to 20 mM was accompanied by a 50% decrease in the oxidation rate of 0.5 mM-[U-14C]palmitate in control (fed) islets, and a concomitant increase (100%) in its incorporation into triacylglycerol and phospholipid fractions. (3) Starvation induced a higher basal (3 mM-glucose) rate of palmitate oxidation, which was resistant to inhibition by 20 mM-glucose. The latter also failed to increase palmitate incorporation into islet triacylglycerols and phospholipids. (4) 2-Bromostearate (0.25 mM) strongly inhibited the high oxidation rate of palmitate in islets of starved rats, and allowed a normal stimulation of its incorporation rate into islet lipids by 20mM-glucose. (5) The results suggest that starvation restricts islet esterification of fatty acids by inducing a higher rate of their oxidative degradation that is insensitive to regulation by glucose.

Full text

PDF
317

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashcroft S. J., Weerasinghe L. C., Bassett J. M., Randle P. J. The pentose cycle and insulin release in mouse pancreatic islets. Biochem J. 1972 Feb;126(3):525–532. doi: 10.1042/bj1260525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berne C. The metabolism of lipids in mouse pancreatic islets. The biosynthesis of triacylglycerols and phospholipids. Biochem J. 1975 Dec;152(3):667–673. doi: 10.1042/bj1520667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berne C. The metabolism of lipids in mouse pancreatic islets. The oxidation of fatty acids and ketone bodies. Biochem J. 1975 Dec;152(3):661–666. doi: 10.1042/bj1520661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bouman P. R., Wolters G. H., Konijnendijk W. Insulin secretion and cyclic adenosine 3', 5'-monophosphate levels in pancreatic islets of fed and fasted rats. Time course and dose kinetics during glucose stimulation. Diabetes. 1979 Feb;28(2):132–140. doi: 10.2337/diab.28.2.132. [DOI] [PubMed] [Google Scholar]
  5. Burch P. T., Trus M. D., Berner D. K., Leontire A., Zawalich K. C., Matschinsky F. M. Adaptation of glycolytic enzymes: glucose use and insulin release in rat pancreatic islets during fasting and refeeding. Diabetes. 1981 Nov;30(11):923–928. doi: 10.2337/diab.30.11.923. [DOI] [PubMed] [Google Scholar]
  6. Capito K., Hedeskov C. J. The effect of starvation on phosphodiesterase activity and the content of adenosine 3' :5'-cyclic monophosphate in isolated mouse pancreatic islets. Biochem J. 1974 Sep;142(3):653–658. doi: 10.1042/bj1420653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chase J. F., Tubbs P. K. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters. Biochem J. 1972 Aug;129(1):55–65. doi: 10.1042/bj1290055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Declercq P. E., Debeer L. J., Mannaerts G. P. Role of glycerol 3-phosphate and glycerophosphate acyltransferase in the nutritional control of hepatic triacylglycerol synthesis. Biochem J. 1982 Apr 15;204(1):247–256. doi: 10.1042/bj2040247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  10. GARLAND P. B., RANDLE P. J. EFFECTS OF ALLOXAN DIABETES AND ADRENALINE ON CONCENTRATIONS OF FREE FATTY ACIDS IN RAT HEART AND DIAPHRAGM MUSCLES. Nature. 1963 Jul 27;199:381–382. doi: 10.1038/199381a0. [DOI] [PubMed] [Google Scholar]
  11. Goberna R., Tamarit J., Jr, Osorio J., Fussgänger R., Tamarit J., Pfeiffer E. F. Action of B-hydroxy butyrate, acetoacetate and palmitate on the insulin release in the perfused isolated rat pancreas. Horm Metab Res. 1974 Jul;6(4):256–260. doi: 10.1055/s-0028-1093862. [DOI] [PubMed] [Google Scholar]
  12. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  13. Hedeskov C. J., Capito K. The effect of starvation on insulin secretion and glucose metabolism in mouse pancreatic islets. Biochem J. 1974 Jun;140(3):423–433. doi: 10.1042/bj1400423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hellman B. Effects of starvation and Ca++ on glucose-induced accumulation of cyclic 3',5'-AMP in pancreatic islets. Experientia. 1976 Feb 15;32(2):155–157. doi: 10.1007/BF01937738. [DOI] [PubMed] [Google Scholar]
  15. Herbert V., Lau K. S., Gottlieb C. W., Bleicher S. J. Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab. 1965 Oct;25(10):1375–1384. doi: 10.1210/jcem-25-10-1375. [DOI] [PubMed] [Google Scholar]
  16. Howell S. L., Green I. C., Montague W. A possible role of adenylate cyclase in the long-tern dietary regulation of insulin secretion from rat islets of Langerhans. Biochem J. 1973 Oct;136(2):343–349. doi: 10.1042/bj1360343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hutton J. C., Malaisse W. J. Dynamics of O2 consumption in rat pancreatic islets. Diabetologia. 1980 May;18(5):395–405. doi: 10.1007/BF00276821. [DOI] [PubMed] [Google Scholar]
  18. Idahl L. A. Dynamics of pancreatic beta-cell responses to glucose. Diabetologia. 1973 Oct;9(5):403–412. doi: 10.1007/BF01239437. [DOI] [PubMed] [Google Scholar]
  19. Ide T., Ontko J. A. Increased secretion of very low density lipoprotein triglyceride following inhibition of long chain fatty acid oxidation in isolated rat liver. J Biol Chem. 1981 Oct 25;256(20):10247–10255. [PubMed] [Google Scholar]
  20. KISSANE J. M., ROBINS E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J Biol Chem. 1958 Jul;233(1):184–188. [PubMed] [Google Scholar]
  21. Lacy P. E., Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967 Jan;16(1):35–39. doi: 10.2337/diab.16.1.35. [DOI] [PubMed] [Google Scholar]
  22. Laychock S. G. Identification and metabolism of polyphosphoinositides in isolated islets of Langerhans. Biochem J. 1983 Oct 15;216(1):101–106. doi: 10.1042/bj2160101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Levy J., Herchuelz A., Sener A., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. XX. fasting: a model for altered glucose recognition by the B-cell. Metabolism. 1976 May;25(5):583–591. doi: 10.1016/0026-0495(76)90012-3. [DOI] [PubMed] [Google Scholar]
  24. Lund H., Borrebaek B., Bremer J. Regulation of palmitate esterification/oxidation by glucagon in isolated hepatocytes: the role of alpha-glycerophosphate concentration. Biochim Biophys Acta. 1980 Dec 5;620(3):364–371. doi: 10.1016/0005-2760(80)90128-9. [DOI] [PubMed] [Google Scholar]
  25. Malaisse W. J., Hutton J. C., Carpinelli A. R., Herchuelz A., Sener A. The stimulus-secretion coupling of amino acid-induced insulin release: metabolism and cationic effects of leucine. Diabetes. 1980 Jun;29(6):431–437. doi: 10.2337/diab.29.6.431. [DOI] [PubMed] [Google Scholar]
  26. Malaisse W. J., Sener A., Herchuelz A., Hutton J. C. Insulin release: the fuel hypothesis. Metabolism. 1979 Apr;28(4):373–386. doi: 10.1016/0026-0495(79)90111-2. [DOI] [PubMed] [Google Scholar]
  27. Malaisse W. J., Sener A. Islet metabolism: recent acquisitions. Acta Biol Med Ger. 1981;40(1):3–8. [PubMed] [Google Scholar]
  28. Malaisse W. J., Sener A., Malaisse-Lagae F., Welsh M., Matthews D. E., Bier D. M., Hellerström C. The stimulus-secretion coupling of amino acid-induced insulin release. Metabolic response of pancreatic islets of L-glutamine and L-leucine. J Biol Chem. 1982 Aug 10;257(15):8731–8737. [PubMed] [Google Scholar]
  29. McGarry J. D., Foster D. W. Importance of experimental conditions in evaluating the malonyl-CoA sensitivity of liver carnitine acyltransferase. Studies with fed and starved rats. Biochem J. 1981 Nov 15;200(2):217–223. doi: 10.1042/bj2000217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
  31. McGarry J. D., Meier J. M., Foster D. W. The effects of starvation and refeeding on carbohydrate and lipid metabolism in vivo and in the perfused rat liver. The relationship between fatty acid oxidation and esterification in the regulation of ketogenesis. J Biol Chem. 1973 Jan 10;248(1):270–278. [PubMed] [Google Scholar]
  32. Mills S. E., Foster D. W., McGarry J. D. Interaction of malonyl-CoA and related compounds with mitochondria from different rat tissues. Relationship between ligand binding and inhibition of carnitine palmitoyltransferase I. Biochem J. 1983 Jul 15;214(1):83–91. doi: 10.1042/bj2140083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Robinson I. N., Zammit V. A. Sensitivity of carnitine acyltransferase I to malonly-CoA inhibition in isolated rat liver mitochondria is quantitatively related to hepatic malonyl-CoA concentration in vivo. Biochem J. 1982 Jul 15;206(1):177–179. doi: 10.1042/bj2060177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Saggerson E. D., Carpenter C. A. Response to starvation of hepatic carnitine palmitoyltransferase activity and its regulation by malonyl-CoA. Sex differences and effects of pregnancy. Biochem J. 1982 Dec 15;208(3):673–678. doi: 10.1042/bj2080673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Selawry H., Gutman R., Fink G., Recant L. The effect of starvation on tissue adenosine 3'-5' monophosphate levels. Biochem Biophys Res Commun. 1973 Mar 5;51(1):198–204. doi: 10.1016/0006-291x(73)90528-7. [DOI] [PubMed] [Google Scholar]
  36. Sener A., Kawazu S., Hutton J. C., Boschero A. C., Devis G., Somers G., Herchuelz A., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. Effect of exogenous pyruvate on islet function. Biochem J. 1978 Oct 15;176(1):217–232. doi: 10.1042/bj1760217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tamarit-Rodriguez J., Hellman B., Sehilin J. Metabolic characteristics of pancreatic beta-cells exposed to calcium-transporting ionophores. Biochim Biophys Acta. 1977 Jan 24;496(1):167–174. doi: 10.1016/0304-4165(77)90124-6. [DOI] [PubMed] [Google Scholar]
  38. Tougui Z., Do Khac L., Harbon S. Modulation of cyclic AMP content of the rat myometrium: desensitization to isoproterenol, PGE2 and prostacyclin. Mol Cell Endocrinol. 1980 Oct;20(1):17–34. doi: 10.1016/0303-7207(80)90091-x. [DOI] [PubMed] [Google Scholar]
  39. Vytásek R. A sensitive fluorometric assay for the determination of DNA. Anal Biochem. 1982 Mar 1;120(2):243–248. doi: 10.1016/0003-2697(82)90342-6. [DOI] [PubMed] [Google Scholar]
  40. Welsh M., Andersson A., Brolin S., Hellerström C. Effects of glucose, leucine and adenosine on insulin release, 45Ca2+ net uptake, NADH/NAD ratios and oxygen consumption of islets isolated from fed and starved mice. Mol Cell Endocrinol. 1983 Apr;30(1):51–62. doi: 10.1016/0303-7207(83)90200-9. [DOI] [PubMed] [Google Scholar]
  41. Welsh M., Andersson A. Effects of starvation on oxidative metabolism and insulin release by isolated mouse pancreatic islets. Acta Endocrinol (Copenh) 1982 Oct;101(2):227–234. doi: 10.1530/acta.0.1010227. [DOI] [PubMed] [Google Scholar]
  42. Witters L. A. Insulin stimulates the phosphorylation of acetyl-CoA carboxylase. Biochem Biophys Res Commun. 1981 May 29;100(2):872–878. doi: 10.1016/s0006-291x(81)80254-9. [DOI] [PubMed] [Google Scholar]
  43. Wolters G. H., Konijnendijk W., Bouman P. R. Effects of fasting on insulin secretion, islet glucose metabolism, and the cyclic adenosine 3',5'-monophosphate content of rat pancreatic islets in vitro. Diabetes. 1977 Jun;26(6):530–537. doi: 10.2337/diab.26.6.530. [DOI] [PubMed] [Google Scholar]
  44. Zammit V. A., Corstorphine C. G. Changes in the proportion of acetyl-CoA carboxylase in the active form in rat liver. Effect of starvation, lactation and weaning. Biochem J. 1982 Jun 15;204(3):757–764. doi: 10.1042/bj2040757. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES