Abstract
Factors regulating the release of phosphatidylcholine (PC) from neonatal-rat lungs were investigated. The results show that the release of prelabelled PC from the newborn-rat lung was augmented by air ventilation at the onset of breathing. This response was mimicked in lungs of pups delivered 1 day before term and allowed to breathe for different time intervals. Anoxia further augmented the ventilation-enhanced PC release from the newborn-rat lungs. The ventilation-induced release of PC was not abolished by the prior treatment of pups in utero or mothers in vivo with phenoxybenzamine, propranolol or atropine, suggesting the lack of receptor stimulation in the ventilation-enhanced PC release at birth. The results also show that ventilation stimulated [methyl-14C]choline incorporation into lung PC, presumably to replenish the depleted surfactant stores. The ratio of adenylate cyclase/cyclic AMP phosphodiesterase activities, which reflects cyclic AMP levels in the developing rat lungs, did not change during the 120 min of air ventilation when the release of PC was much enhanced, implying that cyclic AMP may not be involved. This confirms our conclusion that stimulation of beta-adrenergic receptor was not involved in the air-ventilation-enhanced release of PC. Since the cell number or size did not change during 120 min of ventilation when the alveolar-cell surface was maximally distended, it is suggested that distension of alveolar wall by air ventilation at the onset of breathing may bring the lamellar bodies containing surfactant close to the luminal surface of alveolar type II cells, thereby enhancing their fusion and extrusion by exocytosis.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brown L. A., Longmore W. J. Adrenergic and cholinergic regulation of lung surfactant secretion in the isolated perfused rat lung and in the alveolar type II cell in culture. J Biol Chem. 1981 Jan 10;256(1):66–72. [PubMed] [Google Scholar]
- Chernick V., Craig R. J. Naloxone reverses neonatal depression caused by fetal asphyxia. Science. 1982 Jun 11;216(4551):1252–1253. doi: 10.1126/science.7200636. [DOI] [PubMed] [Google Scholar]
- Delahunty T. J., Johnston J. M. Neurohumoral control of pulmonary surfactant secretion. Lung. 1979;157(1):45–51. doi: 10.1007/BF02713593. [DOI] [PubMed] [Google Scholar]
- Dobbs L. G., Mason R. J. Pulmonary alveolar type II cells isolated from rats. Release of phosphatidylcholine in response to beta-adrenergic stimulation. J Clin Invest. 1979 Mar;63(3):378–387. doi: 10.1172/JCI109313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faridy E. E. Effect of distension on release of surfactant in excised dogs' lungs. Respir Physiol. 1976 Jul;27(1):99–114. doi: 10.1016/0034-5687(76)90021-9. [DOI] [PubMed] [Google Scholar]
- Faridy E. E., Naimark A. Effect of distension on metabolism of excised dog lung. J Appl Physiol. 1971 Jul;31(1):31–37. doi: 10.1152/jappl.1971.31.1.31. [DOI] [PubMed] [Google Scholar]
- Farrell P. M., Avery M. E. Hyaline membrane disease. Am Rev Respir Dis. 1975 May;111(5):657–688. doi: 10.1164/arrd.1975.111.5.657. [DOI] [PubMed] [Google Scholar]
- Klass D. J. Dibutyryl cyclic GMP and hyperventilation promote rat lung phospholipid release. J Appl Physiol Respir Environ Exerc Physiol. 1979 Aug;47(2):285–289. doi: 10.1152/jappl.1979.47.2.285. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lawson E. E., Birdwell R. L., Huang P. S., Taeusch H. W., Jr Augmentation of pulmonary surfactant secretion by lung expansion at birth. Pediatr Res. 1979 May;13(5 Pt 1):611–614. doi: 10.1203/00006450-197905000-00007. [DOI] [PubMed] [Google Scholar]
- Marino P. A., Rooney S. A. Surfactant secretion in a newborn rabbit lung slice model. Biochim Biophys Acta. 1980 Dec 5;620(3):509–519. doi: 10.1016/0005-2760(80)90143-5. [DOI] [PubMed] [Google Scholar]
- Marino P. A., Rooney S. A. The effect of labor on surfactant secretion in newborn rabbit lung slices. Biochim Biophys Acta. 1981 May 22;664(2):389–396. doi: 10.1016/0005-2760(81)90061-8. [DOI] [PubMed] [Google Scholar]
- Mason R. J., Dobbs L. G., Greenleaf R. D., Williams M. C. Alveolar type II cells. Fed Proc. 1977 Dec;36(13):2697–2702. [PubMed] [Google Scholar]
- Massaro D., Clerch L., Massaro G. D. Surfactant secretion: evidence that cholinergic stimulation of secretion is indirect. Am J Physiol. 1982 Jul;243(1):C39–C45. doi: 10.1152/ajpcell.1982.243.1.C39. [DOI] [PubMed] [Google Scholar]
- Michell R. H., Hawthorne J. N. The site of diphosphoinositide synthesis in rat liver. Biochem Biophys Res Commun. 1965 Nov 22;21(4):333–338. doi: 10.1016/0006-291x(65)90198-1. [DOI] [PubMed] [Google Scholar]
- Nijjar M. S., Ho J. C. Isolation of plasma membranes from rat lungs: effect of age on the subcellular distribution of adenylate cyclase activity. Biochim Biophys Acta. 1980 Jul 16;600(1):238–243. doi: 10.1016/0005-2736(80)90429-0. [DOI] [PubMed] [Google Scholar]
- Nijjar M. S. Role of cyclic AMP and related enzymes in rat lung growth and development. Biochim Biophys Acta. 1979 Sep 3;586(3):464–472. doi: 10.1016/0304-4165(79)90036-9. [DOI] [PubMed] [Google Scholar]
- Nijjar M. S., Thurlbeck W. M. Alterations in enzymes related to adenosine 3',5'-monophosphate during compensatory growth of rat lung. Eur J Biochem. 1980 Apr;105(2):403–407. doi: 10.1111/j.1432-1033.1980.tb04514.x. [DOI] [PubMed] [Google Scholar]
- Oyarzun M. J., Clements J. A. Control of lung surfactant by ventilation, adrenergic mediators, and prostaglandins in the rabbit. Am Rev Respir Dis. 1978 May;117(5):879–891. doi: 10.1164/arrd.1978.117.5.879. [DOI] [PubMed] [Google Scholar]
- Oyarzún M. J., Clements J. A. Ventilatory and cholinergic control of pulmonary surfactant in the rabbit. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jul;43(1):39–45. doi: 10.1152/jappl.1977.43.1.39. [DOI] [PubMed] [Google Scholar]
- Perelman R. H., Engle M. J., Farrell P. M. Perspectives on fetal lung development. Lung. 1981;159(2):53–80. doi: 10.1007/BF02713900. [DOI] [PubMed] [Google Scholar]
- Ryan U. S., Ryan J. W., Smith D. S. Alveolar type II cells: studies on the mode of release of lamellar bodies. Tissue Cell. 1975;7(3):587–599. doi: 10.1016/0040-8166(75)90028-2. [DOI] [PubMed] [Google Scholar]
- Sawin P. B., Glick D. Atropinesterase, a Genetically Determined Enzyme in the Rabbit. Proc Natl Acad Sci U S A. 1943 Feb;29(2):55–59. doi: 10.1073/pnas.29.2.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith B. T. Cell line A549: a model system for the study of alveolar type II cell function. Am Rev Respir Dis. 1977 Feb;115(2):285–293. doi: 10.1164/arrd.1977.115.2.285. [DOI] [PubMed] [Google Scholar]
- Trams E. G., Lauter C. J. On the sidedness of plasma membrane enzymes. Biochim Biophys Acta. 1974 Apr 29;345(2):180–197. doi: 10.1016/0005-2736(74)90257-0. [DOI] [PubMed] [Google Scholar]
- Van Golde L. M. Metabolism of phospholipids in the lung. Am Rev Respir Dis. 1976 Nov;114(5):977–1000. doi: 10.1164/arrd.1976.114.5.977. [DOI] [PubMed] [Google Scholar]
- Whitsett J. A., Manton M. A., Darovec-Beckerman C., Adams K. G., Moore J. J. beta-Adrenergic receptors in the developing rabbit lung. Am J Physiol. 1981 Apr;240(4):E351–E357. doi: 10.1152/ajpendo.1981.240.4.E351. [DOI] [PubMed] [Google Scholar]
