Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Aug 1;221(3):631–636. doi: 10.1042/bj2210631

Cadmium metabolism by rat liver endothelial and Kupffer cells.

T J Caperna, M L Failla
PMCID: PMC1144091  PMID: 6477490

Abstract

The metabolism of cadmium was investigated in Wistar-rat liver non-parenchymal cells. Kupffer and endothelial cells, the major cell populations lining the sinusoidal tracts, were isolated by collagenase dispersion and purified by centrifugal elutriation. At 20 h after subcutaneous injection of the metal salt (1.5 mg of Cd/kg body weight), endothelial cells accumulated 2-fold higher concentrations of Cd than did Kupffer or parenchymal cells. Most of the Cd in non-parenchymal cells was associated with cytosolic metallothionein (MT), the low-Mr heavy-metal-binding protein(s). When MT was quantified in cytosols from cells isolated from control rats by a 203Hg competitive-binding assay, low levels were found to be present in Kupffer, endothelial and parenchymal cells. Cd injection significantly increased MT levels in all three cell types. The induction of MT synthesis was investigated in vitro by using primary monolayer cultures. The incorporation of [35S]cysteine into MT increased 47% over constitutive levels in endothelial-cell cultures after the addition of 0.8 microM-Cd2+ to the medium for 10 h. MT synthesis in Kupffer cells was not observed. The lack of MT synthesis by monolayer cultures of Kupffer cells in vitro was associated with a decreased capacity of these cells to accumulate heavy metals from the extracellular medium. This apparent decreased ability to transport metals did not reflect a general defect in either cellular function or metabolic activity, since isolated Kupffer cells incorporated [3H]leucine into protein at rates comparable with those shown by liver parenchymal cells and readily phagocytosed particles.

Full text

PDF
631

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blouin A., Bolender R. P., Weibel E. R. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol. 1977 Feb;72(2):441–455. doi: 10.1083/jcb.72.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cain K., Skilleter D. N. Comparison of cadmium-metallothionein synthesis in parenchymal and non-parenchymal rat liver cells. Biochem J. 1983 Mar 15;210(3):769–773. doi: 10.1042/bj2100769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cain K., Skilleter D. N. Selective uptake of cadmium by the parenchyumal cells of liver. Biochem J. 1980 Apr 15;188(1):285–288. doi: 10.1042/bj1880285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caperna T. J., Garvey J. S. Antigen handling in aging. II. The role of Kupffer and endothelial cells in antigen processing in Fischer 344 rats. Mech Ageing Dev. 1982 Nov;20(3):205–221. doi: 10.1016/0047-6374(82)90088-4. [DOI] [PubMed] [Google Scholar]
  6. Cox C. C., Waters M. D. Isolation of a soluble cadmium-binding protein from pulmonary macrophages. Toxicol Appl Pharmacol. 1978 Nov;46(2):385–394. doi: 10.1016/0041-008x(78)90083-2. [DOI] [PubMed] [Google Scholar]
  7. Failla M. L., Cousins R. J., Mascenik M. J. Cadmium accumulation and metabolism by rat liver parenchymal cells in primary monolayer culture. Biochim Biophys Acta. 1979 Feb 19;583(1):63–72. doi: 10.1016/0304-4165(79)90310-6. [DOI] [PubMed] [Google Scholar]
  8. Failla M. L., Cousins R. J. Zinc accumulation and metabolism in primary cultures of adult rat liver cells. Regulation by glucocorticoids. Biochim Biophys Acta. 1978 Oct 18;543(3):293–304. doi: 10.1016/0304-4165(78)90047-8. [DOI] [PubMed] [Google Scholar]
  9. Failla M. L., Cousins R. J. Zinc uptake by isolated rat liver parenchymal cells. Biochim Biophys Acta. 1978 Feb 1;538(3):435–444. doi: 10.1016/0304-4165(78)90405-1. [DOI] [PubMed] [Google Scholar]
  10. Gerson R. J., Shaikh Z. A. Uptake and binding of cadmium and mercury to metallothionein in rat hepatocyte primary cultures. Biochem J. 1982 Nov 15;208(2):465–472. doi: 10.1042/bj2080465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hidalgo H. A., Koppa V., Bryan S. E. Induction of cadmium-thionein in isolated rat liver cells. Biochem J. 1978 Feb 15;170(2):219–225. doi: 10.1042/bj1700219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hultcrantz R., Högberg J., Glaumann H. Studies on the rat liver following iron overload: an analysis of iron and lysosomal enzymes in isolated parenchymal and non-parenchymal cells. Virchows Arch B Cell Pathol Incl Mol Pathol. 1983;43(1):67–74. doi: 10.1007/BF02932945. [DOI] [PubMed] [Google Scholar]
  13. Karin M., Herschman H. R., Weinstein D. Primary induction of metallothionein by dexamethasone in culture rat hepatocytes. Biochem Biophys Res Commun. 1980 Feb 12;92(3):1052–1069. doi: 10.1016/0006-291x(80)90808-6. [DOI] [PubMed] [Google Scholar]
  14. Knook D. L., Sleyster E. C. Separation of Kupffer and endothelial cells of the rat liver by centrifugal elutriation. Exp Cell Res. 1976 May;99(2):444–449. doi: 10.1016/0014-4827(76)90605-4. [DOI] [PubMed] [Google Scholar]
  15. Li C. Y., Yam L. T., Crosby W. H. Histochemical characterization of cellular and structural elements of the human spleen. J Histochem Cytochem. 1972 Dec;20(12):1049–1058. doi: 10.1177/20.12.1049. [DOI] [PubMed] [Google Scholar]
  16. Patierno S. R., Costa M., Lewis V. M., Peavy D. L. Inhibition of LPS toxicity for macrophages by metallothionein-inducing agents. J Immunol. 1983 Apr;130(4):1924–1929. [PubMed] [Google Scholar]
  17. Piotrowski J. K., Bolanowska W., Sapota A. Evaluation of metallothionein content in animal tissues. Acta Biochim Pol. 1973;20(3):207–215. [PubMed] [Google Scholar]
  18. Praaning-van Dalen D. P., Brouwer A., Knook D. L. Clearance capacity of rat liver Kupffer, Endothelial, and parenchymal cells. Gastroenterology. 1981 Dec;81(6):1036–1044. [PubMed] [Google Scholar]
  19. Sciortino C. V., Failla M. L., Bullis D. B. Identification of metallothionein in parenchymal and non-parenchymal liver cells of the adult rat. Biochem J. 1982 May 15;204(2):509–514. doi: 10.1042/bj2040509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Skilleter D. N., Cain K. Effects of thiol agents on the accumulation of cadmium by rat liver parenchymal and Kupffer cells. Chem Biol Interact. 1981 Nov;37(3):289–298. doi: 10.1016/0009-2797(81)90115-0. [DOI] [PubMed] [Google Scholar]
  21. Stacey N. H., Klaassen C. D. Cadmium uptake by isolated rat hepatocytes. Toxicol Appl Pharmacol. 1980 Sep 30;55(3):448–455. doi: 10.1016/0041-008x(80)90046-0. [DOI] [PubMed] [Google Scholar]
  22. Weiner A. L., Cousins R. J. Copper accumulation and metabolism in primary monolayer cultures of rat liver parenchymal cells. Biochim Biophys Acta. 1980 Apr 17;629(1):113–125. doi: 10.1016/0304-4165(80)90270-6. [DOI] [PubMed] [Google Scholar]
  23. Wisse E., Knook D. L. The investigation of sinusoidal cells: a new approach to the study of liver function. Prog Liver Dis. 1979;6:153–171. [PubMed] [Google Scholar]
  24. Wisse E. Observations on the fine structure and peroxidase cytochemistry of normal rat liver Kupffer cells. J Ultrastruct Res. 1974 Mar;46(3):393–426. doi: 10.1016/s0022-5320(74)90064-1. [DOI] [PubMed] [Google Scholar]
  25. de Leeuw A. M., Barelds R. J., de Zanger R., Knook D. L. Primary cultures of endothelial cells of the rat liver: a model for ultrastructural and functional studies. Cell Tissue Res. 1982;223(1):201–215. doi: 10.1007/BF00221510. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES