Abstract
The hepatic metabolism of hypoxanthine was investigated by studying both the fate of labelled hypoxanthine, added at micromolar concentrations to isolated rat hepatocyte suspensions, and the kinetic properties of purified hypoxanthine/guanine phosphoribosyltransferase from rat liver. More than 80% of hypoxanthine was oxidized towards allantoin; less than 5% of the label was incorporated into the purine mononucleotides, and a similar proportion appeared transiently in inosine. The maximal velocity of oxidation (approx. 750nmol/min per g of cells) was in close agreement with the known activity of xanthine oxidase in liver extracts. In contrast, the maximal velocity of the incorporation of labelled hypoxanthine into mononucleotides reached only 30nmol/min per g of cells, compared with an activity of hypoxanthine/guanine phosphoribosyltransferase, measured at substrate concentrations analogous to those prevailing intracellularly, of 500nmol/min per g of cells. Hypoxanthine incorporation into the mononucleotides was decreased by allopurinol, anoxia and ethanol, despite inhibition of its oxidation under these conditions; it was increased by incubation of the cells in supraphysiological concentrations of Pi. Allopurinol and anoxia decreased the concentration of phosphoribosyl pyrophosphate inside the cells by respectively 40 and 60%, ethanol had no effect on the concentration of this metabolite and Pi increased its concentration up to 10-fold. The kinetic study of purified hypoxanthine/guanine phosphoribosyltransferase showed that a mixture of ATP, IMP, GMP and GTP, at the concentrations prevailing in the liver cell, decreased the V max. of the enzyme 6-fold, increased its Km for hypoxanthine from 1 to 4 microM and its Km for phosphoribosyl pyrophosphate from 2.5 to 25 microM. In the presence of 5 microM-hypoxanthine and 2.5 microM-phosphoribosyl pyrophosphate, the mixture of nucleotides inhibited the activity of purified hypoxanthine/guanine phosphoribosyltransferase by 95%. It is concluded that this inhibition results in a limited participation of hypoxanthine/guanine phosphoribosyltransferase in the control of the production of allantoin by the liver.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barankiewicz J., Gelfand E. W., Issekutz A., Cohen A. Evidence for active purine nucleoside cycles in human mononuclear cells and cultured fibroblasts. J Biol Chem. 1982 Oct 10;257(19):11597–11600. [PubMed] [Google Scholar]
- Barankiewicz J., Henderson J. F. Ribose 1-phosphate metabolism in Ehrlich ascites tumor cells in vitro. Biochim Biophys Acta. 1977 Dec 14;479(4):371–377. doi: 10.1016/0005-2787(77)90030-2. [DOI] [PubMed] [Google Scholar]
- Bashkin P., Sperling O. Some regulatory properties of purine biosynthesis de novo in long-term cultures of epithelial-like rat liver cells. Biochim Biophys Acta. 1978 Feb 1;538(3):505–511. doi: 10.1016/0304-4165(78)90411-7. [DOI] [PubMed] [Google Scholar]
- Battelli M. G., Corte E. D., Stirpe F. Xanthine oxidase type D (dehydrogenase) in the intestine and other organs of the rat. Biochem J. 1972 Feb;126(3):747–749. doi: 10.1042/bj1260747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry M. N., Fanning D. C., Grivell A. R., Lewis S. J., Farrington C. J., Wallace P. G. Evidence for several separate functional pools of NAD(H) within the cytoplasmic compartment of the hepatocyte. Biochem Soc Trans. 1980 Oct;8(5):570–570. doi: 10.1042/bst0080570. [DOI] [PubMed] [Google Scholar]
- Bontemps F., Van den Berghe G., Hers H. G. Evidence for a substrate cycle between AMP and adenosine in isolated hepatocytes. Proc Natl Acad Sci U S A. 1983 May;80(10):2829–2833. doi: 10.1073/pnas.80.10.2829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clifford A. J., Riumallo J. A., Baliga B. S., Munro H. N., Brown P. R. Liver nucleotide metabolism in relation to amino acid supply. Biochim Biophys Acta. 1972 Sep 14;277(3):443–458. doi: 10.1016/0005-2787(72)90087-1. [DOI] [PubMed] [Google Scholar]
- Crabtree G. W., Henderson J. F. Rate-limiting steps in the interconversion of purine ribonucleotides in Ehrlich ascites tumor cells in vitro. Cancer Res. 1971 Jul;31(7):985–991. [PubMed] [Google Scholar]
- Della Corte E., Stirpe F. The regulation of xanthine oxidase. Inhibition by reduced nicotinamide-adenine dinucleotide of rat liver xanthine oxidase type D and of chick liver xanthine dehydrogenase. Biochem J. 1970 Mar;117(1):97–100. doi: 10.1042/bj1170097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox I. H., Wyngaarden J. B., Kelley W. N. Depletion of erythrocyte phosphoribosylpyrophosphate in man. N Engl J Med. 1970 Nov 26;283(22):1177–1182. doi: 10.1056/NEJM197011262832201. [DOI] [PubMed] [Google Scholar]
- Harkness R. A., Simmonds R. J., Coade S. B. Purine transport and metabolism in man: the effect of exercise on concentrations of purine bases, nucleosides and nucleotides in plasma, urine, leucocytes and erythrocytes. Clin Sci (Lond) 1983 Mar;64(3):333–340. doi: 10.1042/cs0640333. [DOI] [PubMed] [Google Scholar]
- Hashimoto S. A new spectrophotometric assay method of xanthine oxidase in crude tissue homogenate. Anal Biochem. 1974 Dec;62(2):426–435. doi: 10.1016/0003-2697(74)90175-4. [DOI] [PubMed] [Google Scholar]
- Henderson J. F., Bagnara A. S., Crabtree G. W., Lomax C. A., Shantz G. D., Snyder F. F. Regulation of enzymes of purine metabolism in intact tumor cells. Adv Enzyme Regul. 1975;13:37–64. doi: 10.1016/0065-2571(75)90007-2. [DOI] [PubMed] [Google Scholar]
- Henderson J. F., Fraser J. H., McCoy E. E. Methods for the study of purine metabolism in human cells in vitro. Clin Biochem. 1974 Dec;7(4):339–358. doi: 10.1016/s0009-9120(74)92842-2. [DOI] [PubMed] [Google Scholar]
- Hershey H. V., Taylor M. W. Purification of adenine phosphoribosyltransferase by affinity chromatography. Prep Biochem. 1978;8(6):453–462. doi: 10.1080/00327487808061662. [DOI] [PubMed] [Google Scholar]
- Hershko A., Razin A., Shoshani T., Mager J. Turnover of purine nucleotides in rabbit erythrocytes. II. Studies in vitro. Biochim Biophys Acta. 1967 Nov 21;149(1):59–73. doi: 10.1016/0005-2787(67)90691-0. [DOI] [PubMed] [Google Scholar]
- Jadhav A. L., Townsend L. B., Nelson J. A. Inhibition of hypoxanthine-guanine phosphoribosyl transferase. Biochem Pharmacol. 1979 Apr 1;28(7):1057–1062. doi: 10.1016/0006-2952(79)90303-4. [DOI] [PubMed] [Google Scholar]
- Kamiński Z. W., Jezewska M. M. Effect of NADH on hypoxanthine hydroxylation by native NAD+-dependent xanthine oxidoreductase of rat liver, and the possible biological role of this effect. Biochem J. 1981 Dec 15;200(3):597–603. doi: 10.1042/bj2000597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krenitsky T. A., Papaioannou R. Human hypoxanthine phosphoribosyltransferase. II. Kinetics and chemical modification. J Biol Chem. 1969 Mar 10;244(5):1271–1277. [PubMed] [Google Scholar]
- Lalanne M., Henderson J. F. Determination of 5-phosphoribosyl 1-pyrophosphate in mouse liver. Anal Biochem. 1974 Nov;62(1):121–133. doi: 10.1016/0003-2697(74)90373-x. [DOI] [PubMed] [Google Scholar]
- Lalanne M., Henderson J. F. Effects of hormones and drugs on phosphoribosyl pyrophosphate concentrations in mouse liver. Can J Biochem. 1975 Mar;53(3):394–399. doi: 10.1139/o75-055. [DOI] [PubMed] [Google Scholar]
- Lalanne M., Lafleur F. Inosine synthesis and phosphoribosylpyrophosphate availability in rat liver cells in the presence of allopurinol. Can J Biochem. 1980 Aug;58(8):607–613. doi: 10.1139/o80-083. [DOI] [PubMed] [Google Scholar]
- Lewis A. S., Glantz M. D. Monomeric purine nucleoside phosphorylase from rabbit liver. Purification and characterization. J Biol Chem. 1976 Jan 25;251(2):407–413. [PubMed] [Google Scholar]
- Murray A. W. Inhibition of purine phosphoribosyltransferases from Ehrlich ascites-tumour cells by purine nucleotides. Biochem J. 1966 Sep;100(3):671–674. doi: 10.1042/bj1000671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray A. W. The biological significance of purine salvage. Annu Rev Biochem. 1971;40:811–826. doi: 10.1146/annurev.bi.40.070171.004115. [DOI] [PubMed] [Google Scholar]
- Olsen A. S., Milman G. Chinese hamster hypoxanthine-guanine phosphoribosyltransferase. Purification, structural, and catalytic properties. J Biol Chem. 1974 Jul 10;249(13):4030–4037. [PubMed] [Google Scholar]
- POMALES R., BIEBER S., FRIEDMAN R., HITCHINGS G. H. Augmentation of the incorporation of hypoxanthine into nucleic acids by the administration of an inhibitor of xanthine oxidase. Biochim Biophys Acta. 1963 May 28;72:119–120. [PubMed] [Google Scholar]
- Penefsky H. S. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1977 May 10;252(9):2891–2899. [PubMed] [Google Scholar]
- Raivio K. O., Lazar C. S., Becker M. A. Regulation of 5-phosphoribosyl-1-pyrophosphate synthesis in human fibroblasts by the concentration of inorganic phosphate. Biochim Biophys Acta. 1981 Nov 18;678(1):58–64. doi: 10.1016/0304-4165(81)90047-7. [DOI] [PubMed] [Google Scholar]
- Reibel D. K., Rovetto M. J. Separation of myocardial purine nucleosides and nucleotides by one-dimensional thin-layer chromatography. J Chromatogr. 1978 Nov 21;161:406–409. doi: 10.1016/s0021-9673(01)85263-8. [DOI] [PubMed] [Google Scholar]
- Seegmiller J. E., Rosenbloom F. M., Kelley W. N. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science. 1967 Mar 31;155(3770):1682–1684. doi: 10.1126/science.155.3770.1682. [DOI] [PubMed] [Google Scholar]
- Shenoy T. S., Clifford A. J. Adenine nucleotide metabolism in relation to purine enzymes in liver, erythrocytes and cultured fibroblasts. Biochim Biophys Acta. 1975 Nov 10;411(1):133–143. doi: 10.1016/0304-4165(75)90292-5. [DOI] [PubMed] [Google Scholar]
- Smith C. M., Rovamo L. M., Kekomäki M. P., Raivio K. O. Purine metabolism in isolated rat hepatocytes. Can J Biochem. 1977 Nov;55(11):1134–1139. doi: 10.1139/o77-169. [DOI] [PubMed] [Google Scholar]
- Stirpe F., Della Corte E. The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem. 1969 Jul 25;244(14):3855–3863. [PubMed] [Google Scholar]
- Sutton J. R., Toews C. J., Ward G. R., Fox I. H. Purine metabolism during strenuous muscular exercise in man. Metabolism. 1980 Mar;29(3):254–260. doi: 10.1016/0026-0495(80)90067-0. [DOI] [PubMed] [Google Scholar]
- Van den Berghe G., Bontemps F., Hers H. G. Purine catabolism in isolated rat hepatocytes. Influence of coformycin. Biochem J. 1980 Jun 15;188(3):913–920. doi: 10.1042/bj1880913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vincent M. F., Van den Berghe G., Hers H. G. The pathway of adenine nucleotide catabolism and its control in isolated rat hepatocytes subjected to anoxia. Biochem J. 1982 Jan 15;202(1):117–123. doi: 10.1042/bj2020117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waud W. R., Rajagopalan K. V. Purification and properties of the NAD+-dependent (type D) and O2-dependent (type O) forms of rat liver xanthine dehydrogenase. Arch Biochem Biophys. 1976 Feb;172(2):354–364. doi: 10.1016/0003-9861(76)90087-4. [DOI] [PubMed] [Google Scholar]
- Wilson J. M., Young A. B., Kelley W. N. Hypoxanthine-guanine phosphoribosyltransferase deficiency. The molecular basis of the clinical syndromes. N Engl J Med. 1983 Oct 13;309(15):900–910. doi: 10.1056/NEJM198310133091507. [DOI] [PubMed] [Google Scholar]
- Wohlhueter R. M. Hypoxanthine phosphoribosyltransferase activity in normal, developing, and neoplastic tissues of the rat. Eur J Cancer. 1975 Jul;11(7):463–472. doi: 10.1016/0014-2964(75)90147-4. [DOI] [PubMed] [Google Scholar]
- Wong P. C., Henderson J. F. Purine ribonucleotide biosynthesis, interconversion and catabolism in mouse brain in vitro. Biochem J. 1972 Oct;129(5):1085–1094. doi: 10.1042/bj1291085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmerman T. P., Gersten N. B., Ross A. F., Miech R. P. Adenine as substrate for purine nucleoside phosphorylase. Can J Biochem. 1971 Sep;49(9):1050–1054. doi: 10.1139/o71-153. [DOI] [PubMed] [Google Scholar]
- van den Berghe G., Bronfman M., Vanneste R., Hers H. G. The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase. Biochem J. 1977 Mar 15;162(3):601–609. doi: 10.1042/bj1620601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van den Berghe G., van Pottelsberghe C., Hers H. G. A kinetic study of the soluble 5'-nucleotidase of rat liver. Biochem J. 1977 Mar 15;162(3):611–616. doi: 10.1042/bj1620611. [DOI] [PMC free article] [PubMed] [Google Scholar]