Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Aug 15;222(1):169–176. doi: 10.1042/bj2220169

An extension of Chou's graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways.

G P Zhou, M H Deng
PMCID: PMC1144157  PMID: 6477507

Abstract

An extension has been made to the Chou's graphic rules in order to cover those enzyme-catalysed reaction systems in which there are two or more parallel reaction routes between any two enzyme species.

Full text

PDF
169

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ainsworth S. A slide rule for deriving the rate equations of enzyme catalysed reactions with unbranched mechanisms. J Theor Biol. 1974 Mar;44(1):161–165. doi: 10.1016/s0022-5193(74)80036-6. [DOI] [PubMed] [Google Scholar]
  2. Cha S. A simple method for derivation of rate equations for enzyme-catalyzed reactions under the rapid equilibrium assumption or combined assumptions of equilibrium and steady state. J Biol Chem. 1968 Feb 25;243(4):820–825. [PubMed] [Google Scholar]
  3. Chou K. C. A new graphical rule for rate laws of enzyme reactions with branched pathways. Can J Biochem. 1981 Sep;59(9):757–761. doi: 10.1139/o81-105. [DOI] [PubMed] [Google Scholar]
  4. Chou K. C. A new schematic method in enzyme kinetics. Eur J Biochem. 1980 Dec;113(1):195–198. doi: 10.1111/j.1432-1033.1980.tb06155.x. [DOI] [PubMed] [Google Scholar]
  5. Chou K. C. Advances in graphic methods of enzyme kinetics. Biophys Chem. 1983 Jan;17(1):51–55. doi: 10.1016/0301-4622(83)87013-6. [DOI] [PubMed] [Google Scholar]
  6. Chou K. C., Forsén S. Graphical rules for enzyme-catalysed rate laws. Biochem J. 1980 Jun 1;187(3):829–835. doi: 10.1042/bj1870829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chou K. C. Two new schematic rules for rate laws of enzyme-catalysed reactions. J Theor Biol. 1981 Apr 21;89(4):581–592. doi: 10.1016/0022-5193(81)90030-8. [DOI] [PubMed] [Google Scholar]
  8. Cornish-Bowden A. An automatic method for deriving steady-state rate equations. Biochem J. 1977 Jul 1;165(1):55–59. doi: 10.1042/bj1650055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fromm H. J. A simplified schematic method for deriving steady-state rate equations using a modification of the "theory of graphs" procedure. Biochem Biophys Res Commun. 1970 Aug 11;40(3):692–697. doi: 10.1016/0006-291x(70)90959-9. [DOI] [PubMed] [Google Scholar]
  10. Goldstein B. N. Analysis of cyclic enzyme reaction schemes by the graph-theoretic method. J Theor Biol. 1983 Jul 21;103(2):247–264. doi: 10.1016/0022-5193(83)90027-9. [DOI] [PubMed] [Google Scholar]
  11. Indge K. J., Childs R. E. A new method for deriving steady-state rate equations suitable for manual or computer use. Biochem J. 1976 Jun 1;155(3):567–570. doi: 10.1042/bj1550567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jackson R. H., Cole J. A., Cornish-Bowden A. The steady-state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K 12. Nitrite and hydroxylamine reduction. Biochem J. 1981 Oct 1;199(1):171–178. doi: 10.1042/bj1990171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuo-Chen C., Min L. W. Graphical rules for non-steady state enzyme kinetics. J Theor Biol. 1981 Aug 21;91(4):637–654. doi: 10.1016/0022-5193(81)90215-0. [DOI] [PubMed] [Google Scholar]
  14. Orsi B. A. A simple method for the derivation of the steady-state rate equation for an enzyme mechanism. Biochim Biophys Acta. 1972 Jan 20;258(1):4–8. doi: 10.1016/0005-2744(72)90961-8. [DOI] [PubMed] [Google Scholar]
  15. Seshagiri N. Chart method for the analysis of enzyme kinetic reactions. J Theor Biol. 1972 Mar;34(3):469–486. doi: 10.1016/0022-5193(72)90136-1. [DOI] [PubMed] [Google Scholar]
  16. WONG J. T., HANES C. S. Kinetic formulations for enzymic reactions involving two substrates. Can J Biochem Physiol. 1962 Jun;40:763–804. [PubMed] [Google Scholar]
  17. Whitehead E. P. The structure of steady-state enzyme kinetic equations: a graph-theoretical algorithm for obtaining conditions for reduction in degree by common-factor cancellation. J Theor Biol. 1979 Oct 7;80(3):355–381. doi: 10.1016/0022-5193(79)90099-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES