Abstract
Ethanolamine phospholipid head groups in Paramecium were synthesized directly from ethanolamine. As in other cell types, radioactivity from ethanolamine failed to incorporate significantly into head groups of ethanolamine phosphonolipids, indicating that the phosphonolipids are not derived from their phospholipid analogues. Unlike other systems previously examined, radioactivity from serine is incorporated into both ethanolamine phospholipid and phosphonolipid head groups of glycerolipids and sphingolipids in this ciliate. These observations suggest that synthesis of ethanolamine phosphonolipids involves synthesis de novo of free phosphonoserine, which is then incorporated into lipids, and then lipid-bound phosphonoserine intermediates (glycerolipids or sphingolipids) undergo decarboxylation, forming lipidbound phosphonoethanolamine compounds.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews D., Nelson D. L. Biochemical studies of the excitable membrane of Paramecium tetraurelia. II. Phospholipids of ciliary and other membranes. Biochim Biophys Acta. 1979 Jan 19;550(2):174–187. doi: 10.1016/0005-2736(79)90205-0. [DOI] [PubMed] [Google Scholar]
- Cande W. Z. A permeabilized cell model for studying cytokinesis using mammalian tissue culture cells. J Cell Biol. 1980 Nov;87(2 Pt 1):326–335. doi: 10.1083/jcb.87.2.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter H. E., Gaver R. C. Branched-chain sphingosines from Tetrahymena pyriformis. Biochem Biophys Res Commun. 1967 Dec 29;29(6):886–891. doi: 10.1016/0006-291x(67)90304-x. [DOI] [PubMed] [Google Scholar]
- Dennis E. A., Kennedy E. P. Enzymatic synthesis and decarboxylation of phosphatidylserine in Tetrahymena pyriformis. J Lipid Res. 1970 Sep;11(5):394–403. [PubMed] [Google Scholar]
- Kaneshiro E. S. Positional distribution of fatty acids in the major glycerophospholipids of Paramecium tetraurelia. J Lipid Res. 1980 Jul;21(5):559–570. [PubMed] [Google Scholar]
- Kittredge J. S., Roberts E. A carbon-phosphorus bond in nature. Science. 1969 Apr 4;164(3875):37–42. doi: 10.1126/science.164.3875.37. [DOI] [PubMed] [Google Scholar]
- Liang C. R., Rosenberg H. The biosynthesis of the carbon-phosphorus bond in Tetrahymena. Biochim Biophys Acta. 1968 Mar 11;156(2):437–439. doi: 10.1016/0304-4165(68)90283-3. [DOI] [PubMed] [Google Scholar]
- Rhoads D. E., Kaneshiro E. S. Characterizations of phospholipids from Paramecium tetraurelia cells and cilia. J Protozool. 1979 May;26(2):329–338. doi: 10.1111/j.1550-7408.1979.tb02790.x. [DOI] [PubMed] [Google Scholar]
- Smith J. D., Law J. H. Phosphonic acid metabolism in Tetrahymena. Biochemistry. 1970 May 12;9(10):2152–2157. doi: 10.1021/bi00812a018. [DOI] [PubMed] [Google Scholar]
- Stoffel W. Sphingolipids. Annu Rev Biochem. 1971;40:57–82. doi: 10.1146/annurev.bi.40.070171.000421. [DOI] [PubMed] [Google Scholar]
- Thompson G. A., Jr The metabolism of 2-aminoethylphosphonate lipids in Tetrahymena pyriformis. Biochim Biophys Acta. 1969 Mar 4;176(2):330–338. doi: 10.1016/0005-2760(69)90191-x. [DOI] [PubMed] [Google Scholar]
- Warren W. A. Biosynthesis of phosphonic acids in Tetrahymena. Biochim Biophys Acta. 1968 Mar 11;156(2):340–346. doi: 10.1016/0304-4165(68)90263-8. [DOI] [PubMed] [Google Scholar]

