Abstract
Blowfly salivary glands, previously exposed to 10 microM-5-hydroxytryptamine for 30 min, demonstrated a rapid compensatory resynthesis of [3H]inositol-labelled phosphatidylinositol 4,5-bisphosphate when allowed to recover in medium containing 3-5 microM-inositol. Phosphatidylinositol 4,5-bisphosphate comprised 70% of the total [3H]-phosphoinositide, and there was a corresponding decrease in the formation of [3H]-phosphatidylinositol. Subsequent addition of 5-hydroxytryptamine produced an equivalent breakdown of the newly synthesized phosphoinositides but little 45Ca2+ gating. Increasing the inositol concentration in the medium to 300 microM produced a 14-fold stimulation of phosphatidylinositol synthesis but only a 5-fold increase in phosphatidylinositol 4,5-bisphosphate synthesis. Increasing the inositol concentration in the medium from 3 microM to 300 microM resulted in a progressively greater recovery of the 45Ca2+-gating response. At 300 microM-inositol there was an 85% recovery of 45Ca2+-gating response. These results indicate that conversion of phosphatidylinositol into phosphatidylinositol 4,5-bisphosphate occurs in blowfly salivary glands and is secondary to an initial breakdown of the phosphoinositides. Recovery of Ca2+ gating is dependent on the restoration of both phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate to appropriate concentrations.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdel-Latif A. A., Yau S. J., Smith J. P. Effect of neurotransmitters on phospholipid metabolism in rat cerebral-cortex slices: cellular and subcellular distribution. J Neurochem. 1974 Mar;22(3):383–393. doi: 10.1111/j.1471-4159.1974.tb07604.x. [DOI] [PubMed] [Google Scholar]
- Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berridge M. J., Fain J. N. Inhibition of phosphatidylinositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine. Biochem J. 1979 Jan 15;178(1):59–69. doi: 10.1042/bj1780059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berridge M. J. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J. 1983 Jun 15;212(3):849–858. doi: 10.1042/bj2120849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Billah M. M., Lapetina E. G. Rapid decrease of phosphatidylinositol 4,5-bisphosphate in thrombin-stimulated platelets. J Biol Chem. 1982 Nov 10;257(21):12705–12708. [PubMed] [Google Scholar]
- Fain J. N., Berridge M. J. Relationship between hormonal activation of phosphatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland. Biochem J. 1979 Jan 15;178(1):45–58. doi: 10.1042/bj1780045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fain J. N., Berridge M. J. Relationship between phosphatidylinositol synthesis and recovery of 5-hydroxytryptamine-responsive Ca2+ flux in blowfly salivary glands. Biochem J. 1979 Jun 15;180(3):655–661. doi: 10.1042/bj1800655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fain J. N. Involvement of phosphatidylinositol breakdown in elevation of cytosol Ca2+ by hormones and relationship to prostaglandin formation. Horiz Biochem Biophys. 1982;6:237–276. [PubMed] [Google Scholar]
- Litosch I., Lee H. S., Fain J. N. Phosphoinositide breakdown in blowfly salivary glands. Am J Physiol. 1984 Jan;246(1 Pt 1):C141–C147. doi: 10.1152/ajpcell.1984.246.1.C141. [DOI] [PubMed] [Google Scholar]
- Litosch I., Lin S. H., Fain J. N. Rapid changes in hepatocyte phosphoinositides induced by vasopressin. J Biol Chem. 1983 Nov 25;258(22):13727–13732. [PubMed] [Google Scholar]
- Litosch I., Saito Y., Fain J. N. 5-HT-stimulated arachidonic acid release from labeled phosphatidylinositol in blowfly salivary glands. Am J Physiol. 1982 Nov;243(5):C222–C226. doi: 10.1152/ajpcell.1982.243.5.C222. [DOI] [PubMed] [Google Scholar]
- Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
- Michell R. H., Kirk C. J., Jones L. M., Downes C. P., Creba J. A. The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions. Philos Trans R Soc Lond B Biol Sci. 1981 Dec 18;296(1080):123–138. doi: 10.1098/rstb.1981.0177. [DOI] [PubMed] [Google Scholar]
- Schacht J. Purification of polyphosphoinositides by chromatography on immobilized neomycin. J Lipid Res. 1978 Nov;19(8):1063–1067. [PubMed] [Google Scholar]
- Streb H., Irvine R. F., Berridge M. J., Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature. 1983 Nov 3;306(5938):67–69. doi: 10.1038/306067a0. [DOI] [PubMed] [Google Scholar]

