Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Sep 1;222(2):477–486. doi: 10.1042/bj2220477

Cyclic nucleotides and their relationship to complement-component-C2 synthesis by human monocytes.

D Lappin, D W Riches, B Damerau, K Whaley
PMCID: PMC1144202  PMID: 6089769

Abstract

The time courses of changes in cyclic nucleotide levels in monocytes have been studied. Histamine and prostaglandin E2 (PGE2) produced a rapid rise in cyclic AMP (peak 15 min) levels, which returned to normal within 4h, whereas cholera toxin, NaF and phosphodiesterase inhibitors produced slow sustained rises lasting over 24h. With the exception of isobutylmethylxanthine (10 mumol X 1(-1), none of these reagents altered cyclic GMP levels. alpha 1-Adrenergic and nicotinic cholinergic receptor-ligand interactions and imidazole produced rapid and relatively short-lived falls in cyclic AMP, and rises in cyclic GMP. In contrast, prostaglandin synthetase inhibitors produced delayed but more sustained falls in cyclic AMP but no rises in cyclic GMP. Agents that increased cyclic AMP decreased complement-component-C2 production, and those that decreased cyclic AMP increased C2 production. Agents that increased cyclic GMP alone (ascorbate, nitroprusside and prostaglandin F2 alpha) did not affect C2 production. Antigen-antibody complexes that stimulate C2 synthesis produced falls in cyclic AMP and rises in cyclic GMP similar to those produced by adrenergic and cholinergic ligands. Serum-treated complexes and anaphylatoxins, which inhibited C2 production, were associated with changes in cyclic AMP similar to those produced by histamine and PGE2. These data suggest that there are two transmembrane signals involved in the regulation of C2 production by monocytes. The inhibitory signal is adenylyl cyclase activation. The stimulatory signal is not so obvious, but may be Ca2+ influx, since the time courses of changes in cyclic nucleotides produced by agents that stimulate C2 synthesis are identical, and alpha 1-adrenergic agonists cause the formation of Ca2+ channels.

Full text

PDF
477

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alper C. A., Johnson A. M., Birtch A. G., Moore F. D. Human C'3: evidence for the liver as the primary site of synthesis. Science. 1969 Jan 17;163(3864):286–288. doi: 10.1126/science.163.3864.286. [DOI] [PubMed] [Google Scholar]
  2. Alper C. A., Rosen F. S. Genetics of the complement system. Adv Hum Genet. 1976;7:141–188. doi: 10.1007/978-1-4757-0659-8_4. [DOI] [PubMed] [Google Scholar]
  3. Bourne H. R., Melmon K. L., Lichtenstein L. M. Histamine augments leukocyte adenosine 3',5'-monophosphate and blocks antigenic histamine release. Science. 1971 Aug 20;173(3998):743–745. doi: 10.1126/science.173.3998.743. [DOI] [PubMed] [Google Scholar]
  4. Cheung W. Y. Cyclic 3 ', 5 '-nucleotide phosphodiesterase. Effect of divalent cations. Biochim Biophys Acta. 1971 Aug 20;242(2):395–409. doi: 10.1016/0005-2744(71)90231-2. [DOI] [PubMed] [Google Scholar]
  5. Curtain C., Looney F. D., Smelstorius J. A. Glycosphingolipid clustering and mast cell degranulation. Int Arch Allergy Appl Immunol. 1981;65(1):34–41. doi: 10.1159/000232735. [DOI] [PubMed] [Google Scholar]
  6. Damerau B., Zimmermann B., Grünefeld E., Czorniak K., Vogt W. Biological activities of C5a and C5adesArg from hog serum. Int Arch Allergy Appl Immunol. 1980;63(4):408–414. doi: 10.1159/000232656. [DOI] [PubMed] [Google Scholar]
  7. Einstein L. P., Schneeberger E. E., Colten H. R. Synthesis of the second component of complement by long-term primary cultures of human monocytes. J Exp Med. 1976 Jan 1;143(1):114–126. doi: 10.1084/jem.143.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fearon D. T. Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5867–5871. doi: 10.1073/pnas.76.11.5867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gallin J. I., Sandler J. A., Clyman R. I., Manganiello V. C., Vaughan M. Agents that increase cyclic AMP inhibit accumulation of cGMP and depress human monocyte locomotion. J Immunol. 1978 Feb;120(2):492–496. [PubMed] [Google Scholar]
  10. Gitlin J. D., Rosen F. S., Lachmann P. J. The mechanism of action of the C3b inactivator (conglutinogen-activating factor) on its naturally occurring substrate, the major fragment of the third component of complement (C3b). J Exp Med. 1975 May 1;141(5):1221–1226. doi: 10.1084/jem.141.5.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hamilton A. O., Morrison L., Kilpatrick W. S., Lappin D., Bensa J. C., Riches D. W., Whaley K. Role of C3 in the control of monocyte C2 production. Immunology. 1984 Jan;51(1):169–176. [PMC free article] [PubMed] [Google Scholar]
  12. Harper J. F., Brooker G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution. J Cyclic Nucleotide Res. 1975;1(4):207–218. [PubMed] [Google Scholar]
  13. Herlin T., Kragballe K. Transient cyclic AMP accumulation during antibody-dependent cytotoxicity mediated by monocytes and neutrophils. Immunology. 1981 Aug;43(4):771–778. [PMC free article] [PubMed] [Google Scholar]
  14. Hobart M. J., Lachmann P. J., Calne R. Y. C6: synthesis by the liver in vivo. J Exp Med. 1977 Aug 1;146(2):629–630. doi: 10.1084/jem.146.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Koopman W. J., Gillis M. H., David J. R. Prevention of MIF activity by agents known to increase cellular cyclic AMP. J Immunol. 1973 Jun;110(6):1609–1614. [PubMed] [Google Scholar]
  16. Lappin D. F., Whaley K. Prostaglandins and prostaglandin synthetase inhibitors regulate the synthesis of complement components by human monocytes. Clin Exp Immunol. 1982 Sep;49(3):623–630. [PMC free article] [PubMed] [Google Scholar]
  17. Lappin D., Damerau B., Whaley K. Anaphylatoxins inhibit C2 production. Clin Exp Immunol. 1983 Nov;54(2):455–460. [PMC free article] [PubMed] [Google Scholar]
  18. Lappin D., Whaley K. Cyclic AMP-mediated modulation of the production of the second component of human complement by monocytes. Int Arch Allergy Appl Immunol. 1981;65(1):85–90. doi: 10.1159/000232742. [DOI] [PubMed] [Google Scholar]
  19. Lappin D., Whaley K. Effects of histamine on monocyte complement production. I. Inhibition of C2 production mediated by its action on H2 receptors. Clin Exp Immunol. 1980 Sep;41(3):497–504. [PMC free article] [PubMed] [Google Scholar]
  20. Littman B. H., Ruddy S. Production of the second component of complement by human monocytes: stimulation by antigen-activated lymphocytes or lymphokines. J Exp Med. 1977 May 1;145(5):1344–1352. doi: 10.1084/jem.145.5.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McCarthy J. B., Wahl S. M., Rees J. C., Olsen C. E., Sandberg L., Wahl L. M. Mediation of macrophage collagenase production by 3'-5' cyclic adenosine monophosphate. J Immunol. 1980 May;124(5):2405–2409. [PubMed] [Google Scholar]
  22. McPhaden A. R., Lappin D., Whaley K. Biosynthesis of complement components. J Clin Lab Immunol. 1982 May;8(1):1–8. [PubMed] [Google Scholar]
  23. McPhaden A., Lappin D., Whaley K. Enhancement of monocyte complement component synthesis by antigen--antibody complexes. Immunology. 1981 Sep;44(1):193–200. [PMC free article] [PubMed] [Google Scholar]
  24. Muschel R. J., Rosen N., Rosen O. M., Bloom B. R. Modulation of Fc-mediated phagocytosis by cyclic AMP and insulin in a macrophage-like cell line. J Immunol. 1977 Nov;119(5):1813–1820. [PubMed] [Google Scholar]
  25. PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pick E. Cyclic AMP affects macrophage migration. Nat New Biol. 1972 Aug 9;238(84):176–177. doi: 10.1038/newbio238176a0. [DOI] [PubMed] [Google Scholar]
  27. Rosen N., Schneck J., Bloom B. R., Rosen O. M. Inhibition of plasminogen activator secretion by cyclic AMP in a macrophage-like cell line. J Cyclic Nucleotide Res. 1978 Oct;4(5):345–358. [PubMed] [Google Scholar]
  28. Ruddy S., Austen K. F. A stoichiometric assay for the fourth component of complement in whole human serum using EAC'la-gp and functionally pure human second component. J Immunol. 1967 Dec;99(6):1162–1172. [PubMed] [Google Scholar]
  29. Ruddy S., Colten H. R. Rheumatoid arthritis. Biosynthesis of complement proteins by synovial tissues. N Engl J Med. 1974 Jun 6;290(23):1284–1288. doi: 10.1056/NEJM197406062902304. [DOI] [PubMed] [Google Scholar]
  30. Rutherford B., Schenkein H. A. C3 cleavage products stimulate release of prostaglandins by human mononuclear phagocytes in vitro. J Immunol. 1983 Feb;130(2):874–877. [PubMed] [Google Scholar]
  31. Schultz R. M., Pavlidis N. A., Stoychkov J. N., Chirigos M. A. Prevention of macrophage tumoricidal activity by agents known to increase cellular cyclic AMP. Cell Immunol. 1979 Jan;42(1):71–78. doi: 10.1016/0008-8749(79)90222-3. [DOI] [PubMed] [Google Scholar]
  32. Strunk R. C., Kunke K. S., Giclas P. C. Human peripheral blood monocyte-derived macrophages produce haemolytically active C3 in vitro. Immunology. 1983 May;49(1):169–174. [PMC free article] [PubMed] [Google Scholar]
  33. Strunk R. C., Kunke K. S., Musson R. A. Lack of requirement for spreading for macrophages to synthesize complement. J Reticuloendothel Soc. 1980 Nov;28(5):483–493. [PubMed] [Google Scholar]
  34. Tack B. D., Prahl J. W. Third component of human complement: purification from plasma and physicochemical characterization. Biochemistry. 1976 Oct 5;15(20):4513–4521. doi: 10.1021/bi00665a028. [DOI] [PubMed] [Google Scholar]
  35. Takai Y., Kishimoto A., Kawahara Y., Minakuchi R., Sano K., Kikkawa U., Mori T., Yu B., Kaibuchi K., Nishizuka Y. Calcium and phosphatidylinositol turnover as signalling for transmembrane control of protein phosphorylation. Adv Cyclic Nucleotide Res. 1981;14:301–313. [PubMed] [Google Scholar]
  36. Vassalli J. D., Hamilton J., Reich E. Macrophage plasminogen activator: modulation of enzyme production by anti-inflammatory steroids, mitotic inhibitors, and cyclic nucleotides. Cell. 1976 Jun;8(2):271–281. doi: 10.1016/0092-8674(76)90011-8. [DOI] [PubMed] [Google Scholar]
  37. Weissmann G., Dukor P., Zurier R. B. Effect of cyclic AMP on release of lysosomal enzymes from phagocytes. Nat New Biol. 1971 Jun 2;231(22):131–135. doi: 10.1038/newbio231131a0. [DOI] [PubMed] [Google Scholar]
  38. Whaley K. Biosynthesis of the complement components and the regulatory proteins of the alternative complement pathway by human peripheral blood monocytes. J Exp Med. 1980 Mar 1;151(3):501–516. doi: 10.1084/jem.151.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Whaley K., Lappin D., Hamilton A. O. Serum-treated antigen-antibody complexes inhibit the production of C2 and factor B by mononuclear phagocytes. Immunology. 1983 Feb;48(2):255–263. [PMC free article] [PubMed] [Google Scholar]
  40. Whaley K., Lappin D., McPhaden A. R., Riches D. W., Sandilands G. P. A comparison of the effects of heat-aggregated and chemically cross-linked IgG on monocyte C2 production. Immunology. 1983 Jul;49(3):457–461. [PMC free article] [PubMed] [Google Scholar]
  41. de Ceulaer C., Papazoglou S., Whaley K. Increased biosynthesis of complement components by cultured monocytes, synovial fluid macrophages and skynovial membrane cells from patients with rheumatoid arthritis. Immunology. 1980 Sep;41(1):37–43. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES