Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Sep 15;222(3):649–655. doi: 10.1042/bj2220649

Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species.

S L Marklund
PMCID: PMC1144226  PMID: 6487268

Abstract

The contents of extracellular superoxide dismutase, CuZn superoxide dismutase and Mn superoxide dismutase were determined in tissues from nine mammalian species. The pattern of CuZn superoxide dismutase distribution was similar in all species, with high activity in metabolically active organs such as liver and kidney and low activity in, for example, skeletal muscle. Mn superoxide dismutase activity was high in organs with high respiration, such as liver, kidney, and myocardium. Overall the Mn superoxide dismutase activity in organs was almost as high as the CuZn superoxide dismutase activity. The content of extracellular superoxide dismutase was, almost without exception, lower than the content of the other isoenzymes. The pattern of tissue distribution was distinctly different from those of CuZn superoxide dismutase and Mn superoxide dismutase. The tissue distribution of extracellular superoxide dismutase differed among species, but in general there was much in lungs and kidneys and little in skeletal muscle. In man, pig, sheep, cow, rabbit and mouse the overall tissue extracellular superoxide dismutase activities were similar to each other, whereas dog, cat and rat tissues contained distinctly less. There was no general correlation between the tissue extracellular superoxide dismutase activity of any of the various species and the variable plasma activity. The ratio between the plasma and the overall tissue activities was high, for some species over unity, providing further evidence for the notion that one role of extracellular superoxide dismutase is as a plasma protein.

Full text

PDF
649

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baret A., Baeteman M. A., Mattei J. F., Michel P., Broussolle B., Giraud F. Immunoreactive Cu SOD and Mn SOD in the circulating blood cells from normal and trisomy 21 subjects. Biochem Biophys Res Commun. 1981 Feb 27;98(4):1035–1043. doi: 10.1016/0006-291x(81)91215-8. [DOI] [PubMed] [Google Scholar]
  2. Gardner T. J., Stewart J. R., Casale A. S., Downey J. M., Chambers D. E. Reduction of myocardial ischemic injury with oxygen-derived free radical scavengers. Surgery. 1983 Sep;94(3):423–427. [PubMed] [Google Scholar]
  3. Gutteridge J. M., Stocks J. Caeruloplasmin: physiological and pathological perspectives. Crit Rev Clin Lab Sci. 1981;14(4):257–329. doi: 10.3109/10408368109105866. [DOI] [PubMed] [Google Scholar]
  4. Halliwell B. Production of superoxide, hydrogen peroxide and hydroxyl radicals by phagocytic cells: a cause of chronic inflammatory disease? Cell Biol Int Rep. 1982 Jun;6(6):529–542. doi: 10.1016/0309-1651(82)90175-8. [DOI] [PubMed] [Google Scholar]
  5. Helfand S. L., Werkmeister J., Pross H., Roder J. C. Oxygen intermediates are required for interferon activation of NK cells. J Interferon Res. 1983;3(2):143–151. doi: 10.1089/jir.1983.3.143. [DOI] [PubMed] [Google Scholar]
  6. Johnston R. B., Jr, Keele B. B., Jr, Misra H. P., Lehmeyer J. E., Webb L. S., Baehner R. L., RaJagopalan K. V. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes. J Clin Invest. 1975 Jun;55(6):1357–1372. doi: 10.1172/JCI108055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Marklund S. L., Holme E., Hellner L. Superoxide dismutase in extracellular fluids. Clin Chim Acta. 1982 Nov 24;126(1):41–51. doi: 10.1016/0009-8981(82)90360-6. [DOI] [PubMed] [Google Scholar]
  8. Marklund S. L. Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7634–7638. doi: 10.1073/pnas.79.24.7634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Marklund S. L. Properties of extracellular superoxide dismutase from human lung. Biochem J. 1984 May 15;220(1):269–272. doi: 10.1042/bj2200269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marklund S. Purification and characterization of a manganese containing superoxide dismutase from bovine heart mitochondria. Int J Biochem. 1978;9(5):299–306. doi: 10.1016/0020-711x(78)90101-5. [DOI] [PubMed] [Google Scholar]
  11. Marklund S. Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for superoxide dismutase. J Biol Chem. 1976 Dec 10;251(23):7504–7507. [PubMed] [Google Scholar]
  12. Martin W. J., 2nd, Gadek J. E., Hunninghake G. W., Crystal R. G. Oxidant injury of lung parenchymal cells. J Clin Invest. 1981 Nov;68(5):1277–1288. doi: 10.1172/JCI110374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  14. Murray H. W., Juangbhanich C. W., Nathan C. F., Cohn Z. A. Macrophage oxygen-dependent antimicrobial activity. II. The role of oxygen intermediates. J Exp Med. 1979 Oct 1;150(4):950–964. doi: 10.1084/jem.150.4.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nishimura N., Ito Y., Adachi T., Hirano K., Sugiura M., Sawaki S. Enzyme immunoassay for manganese-superoxide dismutase in serum and urine. J Pharmacobiodyn. 1982 Nov;5(11):869–876. doi: 10.1248/bpb1978.5.869. [DOI] [PubMed] [Google Scholar]
  16. Parks D. A., Bulkley G. B., Granger D. N., Hamilton S. R., McCord J. M. Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology. 1982 Jan;82(1):9–15. [PubMed] [Google Scholar]
  17. Petrone W. F., English D. K., Wong K., McCord J. M. Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1159–1163. doi: 10.1073/pnas.77.2.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES