Abstract
Human erythrocytes contain only trace amounts of polyamines and lack active polyamine biosynthetic enzymes. A remarkable increase in polyamine content, and in the activity of ornithine and S-adenosyl-L-methionine decarboxylases, is noted in synchronous cultures of the malarial parasite, Plasmodium falciparum. Polyamine biosynthesis reached peak values during the early trophozoite stage, whereas nucleic acid and protein synthesis occurred later in mature trophozoites. DL-alpha-Difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase, did not interfere with merozoite invasion and with ring-form development, but prevented the transformation of trophozoites to schizonts. Concomitantly, the synthesis of proteins and nucleic acids was significantly inhibited. These inhibitory effects could be readily reversed by the diamine putrescine. Macromolecular synthesis and schizogony were normal when 5-10 mM-DL-alpha-difluoromethylornithine and 0.1 mM-putrescine were added to the cultures simultaneously.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachrach U. Cyclic AMP-mediated induction of ornithine decarboxylase of glioma and neuroblastoma cells. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3087–3091. doi: 10.1073/pnas.72.8.3087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen S. S. Comparative biochemistry and drug design for infectious disease. Science. 1979 Sep 7;205(4410):964–971. doi: 10.1126/science.382357. [DOI] [PubMed] [Google Scholar]
- Cohen S. S. The polyamines as a growth industry. Fed Proc. 1982 Dec;41(14):3061–3064. [PubMed] [Google Scholar]
- Geary T. G., Divo A. A., Jensen J. B. An in vitro assay system for the identification of potential antimalarial drugs. J Parasitol. 1983 Jun;69(3):577–583. [PubMed] [Google Scholar]
- Golenser J., Casuto D., Pollack Y. Plasmodium falciparum: in vitro induction of resistance to aminopterin. Exp Parasitol. 1981 Dec;52(3):371–377. doi: 10.1016/0014-4894(81)90095-3. [DOI] [PubMed] [Google Scholar]
- Heby O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation. 1981;19(1):1–20. doi: 10.1111/j.1432-0436.1981.tb01123.x. [DOI] [PubMed] [Google Scholar]
- Jensen J. B. Concentration from continuous culture of erythrocytes infected with trophozoites and schizonts of Plasmodium falciparum. Am J Trop Med Hyg. 1978 Nov;27(6):1274–1276. doi: 10.4269/ajtmh.1978.27.1274. [DOI] [PubMed] [Google Scholar]
- Lambros C., Vanderberg J. P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979 Jun;65(3):418–420. [PubMed] [Google Scholar]
- Seiler N. Use of the dansyl reaction in biochemical analysis. Methods Biochem Anal. 1970;18:259–337. doi: 10.1002/9780470110362.ch5. [DOI] [PubMed] [Google Scholar]
- Tabor C. W., Tabor H. 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu Rev Biochem. 1976;45:285–306. doi: 10.1146/annurev.bi.45.070176.001441. [DOI] [PubMed] [Google Scholar]
- Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]