Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Oct 1;223(1):15–22. doi: 10.1042/bj2230015

Integrated rate equations for enzyme-catalysed first-order and second-order reactions.

E A Boeker
PMCID: PMC1144258  PMID: 6497837

Abstract

Generalized rate equations covering all mechanisms giving hyperbolic initial-rate kinetics with stoichiometry A in equilibrium P, A in equilibrium P + Q, A + B in equilibrium P and A + B in equilibrium P + Q were integrated. The results are regular and reasonably economical.

Full text

PDF
15

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins G. L., Nimmo I. A. The reliability of Michaelis constants and maximum velocities estimated by using the integrated Michaelis-Menten equation. Biochem J. 1973 Dec;135(4):779–784. doi: 10.1042/bj1350779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bates D. J., Frieden C. Full time course studies on the oxidation of reduced coenzyme by bovine liver glutamate dehydrogenase. Use of computer simulation to obtain rate and dissociation constants. J Biol Chem. 1973 Nov 25;248(22):7885–7890. [PubMed] [Google Scholar]
  3. Bates D. J., Frieden C. Treatment of enzyme kinetic data. 3. The use of the full time course of a reaction, as examined by computer simulation, in defining enzyme mechanisms. J Biol Chem. 1973 Nov 25;248(22):7878–7884. [PubMed] [Google Scholar]
  4. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
  5. DARVEY I. G., WILLIAMS J. F. INTEGRATED STEADY-STATE RATE EQUATIONS FOR ENZYME-CATALYZED REACTIONS. Biochim Biophys Acta. 1964 Apr 6;85:1–10. doi: 10.1016/0926-6569(64)90161-0. [DOI] [PubMed] [Google Scholar]
  6. Darvey I. G., Shrager R., Kohn L. D. Integrated steady state rate equations and the determination of individual rate constants. J Biol Chem. 1975 Jun 25;250(12):4696–4701. [PubMed] [Google Scholar]
  7. Duggleby R. G., Morrison J. F. Progress curve analysis in enzyme kinetics: model discrimination and parameter estimation. Biochim Biophys Acta. 1978 Oct 12;526(2):398–409. doi: 10.1016/0005-2744(78)90131-6. [DOI] [PubMed] [Google Scholar]
  8. Duggleby R. G., Morrison J. F. The analysis of progress curves for enzyme-catalysed reactions by non-linear regression. Biochim Biophys Acta. 1977 Apr 12;481(2):297–312. doi: 10.1016/0005-2744(77)90264-9. [DOI] [PubMed] [Google Scholar]
  9. Fernley H. N. Statistical estimations in enzyme kinetics. The integrated Michaelis equation. Eur J Biochem. 1974 Apr 1;43(2):377–378. doi: 10.1111/j.1432-1033.1974.tb03423.x. [DOI] [PubMed] [Google Scholar]
  10. Nimmo I. A., Atkins G. L. A comparison of two methods for fitting the integrated Michaelis-Menten equation. Biochem J. 1974 Sep;141(3):913–914. doi: 10.1042/bj1410913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Orsi B. A., Tipton K. F. Kinetic analysis of progress curves. Methods Enzymol. 1979;63:159–183. doi: 10.1016/0076-6879(79)63010-0. [DOI] [PubMed] [Google Scholar]
  12. Philo R. D., Selwyn M. J. Use of progress curves to investigate product inhibition in enzyme-catalysed reactions. Application to the soluble mitochondrial adenosine triphosphatase. Biochem J. 1973 Nov;135(3):525–530. doi: 10.1042/bj1350525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schwert G. W. The estimation of kinetic constants for the lactate dehydrogenase system by the use of integrated rate equations. J Biol Chem. 1969 Mar 10;244(5):1285–1290. [PubMed] [Google Scholar]
  14. Schwert G. W. Use of integrated rate equations in estimating the kinetic constants of enzyme-catalyzed reactions. J Biol Chem. 1969 Mar 10;244(5):1278–1284. [PubMed] [Google Scholar]
  15. WALTER C. The role of the concentration of the products in integrated rate equations. Arch Biochem Biophys. 1963 Jul;102:14–20. doi: 10.1016/0003-9861(63)90313-8. [DOI] [PubMed] [Google Scholar]
  16. WONG J. T., HANES C. S. Kinetic formulations for enzymic reactions involving two substrates. Can J Biochem Physiol. 1962 Jun;40:763–804. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES