Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Oct 1;223(1):259–262. doi: 10.1042/bj2230259

Kinetics of protein modification reactions. Plot of fractional enzyme activity versus extent of protein modification in cases where all modifiable groups are essential for enzyme activity.

E T Rakitzis
PMCID: PMC1144288  PMID: 6497841

Abstract

The plot of fractional enzyme activity versus extent of protein modification, for cases where all enzyme modifiable groups of a certain kind are essential for activity, is found to be nearly independent of the number, per enzyme active site, of modifiable groups involved. Such plots usually, by a fallacious extension of the initial portion of the plot on the extent-of-modification axis, are interpreted to mean the modification of one single group per enzyme active site (or per enzyme molecule). The possible relevance of these findings to cases in the literature is discussed.

Full text

PDF
259

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belfort M., Maley G. F., Maley F. A single functional arginyl residue involved in the catalysis promoted by Lactobacillus casei thymidylate synthetase. Arch Biochem Biophys. 1980 Oct 1;204(1):340–349. doi: 10.1016/0003-9861(80)90042-9. [DOI] [PubMed] [Google Scholar]
  2. Blumenthal K. M., Smith E. L. Functional arginine residues involved in coenzyme binding by glutamate dehydrogenases. J Biol Chem. 1975 Aug 25;250(16):6555–6559. [PubMed] [Google Scholar]
  3. Bond M. W., Chiu N. Y., Cooperman B. S. Identification of an arginine important for enzymatic activity within the covalent structure of yeast inorganic pyrophosphatase. Biochemistry. 1980 Jan 8;19(1):94–102. doi: 10.1021/bi00542a015. [DOI] [PubMed] [Google Scholar]
  4. Byers L. D., Koshland D. E., Jr The specificity of induced conformational changes. The case of yeast glyceraldehyde-3-phosphate dehydrogenase. Biochemistry. 1975 Aug 12;14(16):3661–3669. doi: 10.1021/bi00687a023. [DOI] [PubMed] [Google Scholar]
  5. Gomi T., Fujioka M. Inactivation of rat liver S-adenosylhomocysteinase by iodoacetamide. Biochemistry. 1982 Aug 17;21(17):4171–4176. doi: 10.1021/bi00260a039. [DOI] [PubMed] [Google Scholar]
  6. Kantrowitz E. R., Lipscomb W. N. An essential residue at the active site of aspartate transcarbamylase. J Biol Chem. 1976 May 10;251(9):2688–2695. [PubMed] [Google Scholar]
  7. Kiss L., Kóródi I., Nańasi P. Study on the role of tyrosine side-chains at the active centre of emulsin beta-D-glucosidase. Biochim Biophys Acta. 1981 Dec 15;662(2):308–311. doi: 10.1016/0005-2744(81)90043-7. [DOI] [PubMed] [Google Scholar]
  8. Koshland D. E., Jr, Némethy G., Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966 Jan;5(1):365–385. doi: 10.1021/bi00865a047. [DOI] [PubMed] [Google Scholar]
  9. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  10. Mizuta K., Tokushige M. Studies on aspartase. II. Role of sulfhydryl groups in aspartase from Escherichia coli. Biochim Biophys Acta. 1975 Sep 22;403(1):221–231. doi: 10.1016/0005-2744(75)90024-8. [DOI] [PubMed] [Google Scholar]
  11. Olson S. T., Massey V. Reactivity of sulfhydryl groups of the flavoenzyme D-lactate dehydrogenase and effect on catalytic activity. Biochemistry. 1980 Jul 8;19(14):3137–3144. doi: 10.1021/bi00555a004. [DOI] [PubMed] [Google Scholar]
  12. Patanjali S. R., Swamy M. J., Anantharam V., Khan M. I., Surolia A. Chemical modification studies on Abrus agglutinin. Involvement of tryptophan residues in sugar binding. Biochem J. 1984 Feb 1;217(3):773–781. doi: 10.1042/bj2170773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rakitzis E. T. Kinetic analysis of biphasic protein modification reactions. J Math Biol. 1980 Aug;10(1):79–87. doi: 10.1007/BF00276397. [DOI] [PubMed] [Google Scholar]
  14. Rakitzis E. T. Kinetics of irreversible enzyme inhibition: co-operative effects. J Theor Biol. 1977 Jul 7;67(1):49–59. doi: 10.1016/0022-5193(77)90184-9. [DOI] [PubMed] [Google Scholar]
  15. Rakitzis E. T. Kinetics of irreversible enzyme inhibition: the interpretation of the fractional enzyme activity vs. extent of protein modification plot. J Theor Biol. 1980 Aug 7;85(3):553–560. doi: 10.1016/0022-5193(80)90328-8. [DOI] [PubMed] [Google Scholar]
  16. Rakitzis E. T. Kinetics of protein modification reactions. Biochem J. 1984 Jan 15;217(2):341–351. doi: 10.1042/bj2170341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Riordan J. F. Arginyl residues and anion binding sites in proteins. Mol Cell Biochem. 1979 Jul 31;26(2):71–92. doi: 10.1007/BF00232886. [DOI] [PubMed] [Google Scholar]
  18. TSOU C. L. Relation between modification of functional groups of proteins and their biological activity. I.A graphical method for the determination of the number and type of essential groups. Sci Sin. 1962 Nov;11:1535–1558. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES