Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Oct 15;223(2):337–344. doi: 10.1042/bj2230337

The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations.

A R Cross, J F Parkinson, O T Jones
PMCID: PMC1144305  PMID: 6497852

Abstract

An NADPH-dependent O2.- -generating oxidase was solubilized from phorbol 12-myristate 13-acetate-activated pig neutrophils by using a mixture of detergents. Recovery of oxidase was approx. 40%. The extract contained cytochrome b-245 (331 pmol/mg of protein) and FAD (421 pmol/mg of protein); approx. 30% of each was reduced within 60s when NADPH was added to anaerobic incubations. Three different additives, quinacrine, p-chloromercuribenzoate and cetyltrimethylammonium bromide, strongly inhibited O2.- generation; they also inhibited the reduction by NADPH of cytochrome b at the same low concentrations. In the presence of p-chloromercuribenzoate cytochrome b reduction was strongly inhibited and flavin reduction was less inhibited. A detergent extract prepared from non-stimulated neutrophils also contained flavin and cytochrome b, but its rate of O2.- production was less than 1% of that from activated cells; its initial rate of cytochrome b and flavin reduction was low, although the state of reduction at equilibrium was similar to that of extracts of activated cells. Even in the non-activated cell extract the reduction of flavin and cytochrome was made fast and complete when Methyl Viologen was added to the anaerobic incubations. The oxidase was temperature-sensitive, with a sharp maximum at 25 degrees C; temperatures above this caused loss of O2.- generation, and this coincided with loss of the characteristic cytochrome b spectrum, indicate of denaturation of the cytochrome. The cytochrome b formed a complex with butyl isocyanide (close to 100% binding at 10mM); butyl isocyanide also inhibited the oxidase activity of stimulated whole neutrophils (22.5% inhibition at 10mM). Photoreduced FMN stimulated O2 uptake by the oxidase. The results support a scheme of electron transport within the oxidase complex involving NADPH, FAD, cytochrome b-245 and O2 in that sequence.

Full text

PDF
337

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
  2. Bellavite P., Cross A. R., Serra M. C., Davoli A., Jones O. T., Rossi F. The cytochrome b and flavin content and properties of the O2- -forming NADPH oxidase solubilized from activated neutrophils. Biochim Biophys Acta. 1983 Jul 28;746(1-2):40–47. doi: 10.1016/0167-4838(83)90008-0. [DOI] [PubMed] [Google Scholar]
  3. Borregaard N., Heiple J. M., Simons E. R., Clark R. A. Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. J Cell Biol. 1983 Jul;97(1):52–61. doi: 10.1083/jcb.97.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borregaard N., Tauber A. I. Subcellular localization of the human neutrophil NADPH oxidase. b-Cytochrome and associated flavoprotein. J Biol Chem. 1984 Jan 10;259(1):47–52. [PubMed] [Google Scholar]
  5. Bramhall S., Noack N., Wu M., Loewenberg J. R. A simple colorimetric method for determination of protein. Anal Biochem. 1969 Oct 1;31(1):146–148. doi: 10.1016/0003-2697(69)90251-6. [DOI] [PubMed] [Google Scholar]
  6. Cross A. R., Higson F. K., Jones O. T., Harper A. M., Segal A. W. The enzymic reduction and kinetics of oxidation of cytochrome b-245 of neutrophils. Biochem J. 1982 May 15;204(2):479–485. doi: 10.1042/bj2040479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cross A. R., Jones O. T., Garcia R., Segal A. W. The association of FAD with the cytochrome b-245 of human neutrophils. Biochem J. 1982 Dec 15;208(3):759–763. doi: 10.1042/bj2080759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cross A. R., Jones O. T., Harper A. M., Segal A. W. Oxidation-reduction properties of the cytochrome b found in the plasma-membrane fraction of human neutrophils. A possible oxidase in the respiratory burst. Biochem J. 1981 Feb 15;194(2):599–606. doi: 10.1042/bj1940599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dutton P. L. Redox potentiometry: determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems. Methods Enzymol. 1978;54:411–435. doi: 10.1016/s0076-6879(78)54026-3. [DOI] [PubMed] [Google Scholar]
  10. Faeder E. J., Siegel L. M. A rapid micromethod for determination of FMN and FAD in mixtures. Anal Biochem. 1973 May;53(1):332–336. doi: 10.1016/0003-2697(73)90442-9. [DOI] [PubMed] [Google Scholar]
  11. Gabig T. G., Lefker B. A. Catalytic properties of the resolved flavoprotein and cytochrome B components of the NADPH dependent O2- . generating oxidase from human neutrophils. Biochem Biophys Res Commun. 1984 Jan 30;118(2):430–436. doi: 10.1016/0006-291x(84)91321-4. [DOI] [PubMed] [Google Scholar]
  12. Gabig T. G., Schervish E. W., Santinga J. T. Functional relationship of the cytochrome b to the superoxide-generating oxidase of human neutrophils. J Biol Chem. 1982 Apr 25;257(8):4114–4119. [PubMed] [Google Scholar]
  13. Gabig T. G. The NADPH-dependent O-.2-generating oxidase from human neutrophils. J Biol Chem. 1983 May 25;258(10):6352–6356. [PubMed] [Google Scholar]
  14. Hamers M. N., de Boer M., Meerhof L. J., Weening R. S., Roos D. Complementation in monocyte hybrids revealing genetic heterogeneity in chronic granulomatous disease. Nature. 1984 Feb 9;307(5951):553–555. doi: 10.1038/307553a0. [DOI] [PubMed] [Google Scholar]
  15. Klebanoff S. J. Iodination of bacteria: a bactericidal mechanism. J Exp Med. 1967 Dec 1;126(6):1063–1078. doi: 10.1084/jem.126.6.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Light D. R., Walsh C., O'Callaghan A. M., Goetzl E. J., Tauber A. I. Characteristics of the cofactor requirements for the superoxide-generating NADPH oxidase of human polymorphonuclear leukocytes. Biochemistry. 1981 Mar 17;20(6):1468–1476. doi: 10.1021/bi00509a010. [DOI] [PubMed] [Google Scholar]
  17. Muir Wood P. The redox potential of the system oxygen--superoxide. FEBS Lett. 1974 Aug 15;44(1):22–24. doi: 10.1016/0014-5793(74)80297-8. [DOI] [PubMed] [Google Scholar]
  18. ROSSI F., ZATTI M. CHANGES IN THE METABOLIC PATTERN OF POLYMORPHO-NUCLEAR LEUCOCYTES DURING PHAGOCYTOSIS. Br J Exp Pathol. 1964 Oct;45:548–559. [PMC free article] [PubMed] [Google Scholar]
  19. Segal A. W., Cross A. R., Garcia R. C., Borregaard N., Valerius N. H., Soothill J. F., Jones O. T. Absence of cytochrome b-245 in chronic granulomatous disease. A multicenter European evaluation of its incidence and relevance. N Engl J Med. 1983 Feb 3;308(5):245–251. doi: 10.1056/NEJM198302033080503. [DOI] [PubMed] [Google Scholar]
  20. Segal A. W., Jones O. T. Absence of cytochrome b reduction in stimulated neutrophils from both female and male patients with chronic granulomatous disease. FEBS Lett. 1980 Jan 28;110(1):111–114. doi: 10.1016/0014-5793(80)80035-4. [DOI] [PubMed] [Google Scholar]
  21. Segal A. W., Jones O. T. Reduction and subsequent oxidation of a cytochrome b of human neutrophils after stimulation with phorbol myristate acetate. Biochem Biophys Res Commun. 1979 May 14;88(1):130–134. doi: 10.1016/0006-291x(79)91706-6. [DOI] [PubMed] [Google Scholar]
  22. Segal A. W., Jones O. T. The subcellular distribution and some properties of the cytochrome b component of the microbicidal oxidase system of human neutrophils. Biochem J. 1979 Jul 15;182(1):181–188. doi: 10.1042/bj1820181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wakeyama H., Takeshige K., Minakami S. NADPH-dependent reduction of 2,6-dichlorophenol-indophenol by the phagocytic vesicles of pig polymorphonuclear leucocytes. Biochem J. 1983 Feb 15;210(2):577–581. doi: 10.1042/bj2100577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wakeyama H., Takeshige K., Takayanagi R., Minakami S. Superoxide-forming NADPH oxidase preparation of pig polymorphonuclear leucocyte. Biochem J. 1982 Sep 1;205(3):593–601. doi: 10.1042/bj2050593. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES