Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Oct 15;223(2):393–399. doi: 10.1042/bj2230393

Increased cathepsin D-like activity in cortex, tubules, and glomeruli isolated from rats with experimental nephrotic syndrome.

W H Baricos, S V Shah
PMCID: PMC1144311  PMID: 6497855

Abstract

We have examined the activity and distribution of cathepsin D (EC 3.4.23.5), a major renal lysosomal endoproteinase, in the various anatomical and functional areas of normal rat kidney. Cathepsin D-like activities (delta A280/h per mg of protein) in normal rat tissues were: cortex, 0.78 +/- 0.05, n = 37; medulla, 0.62 +/- 0.03, n = 12; papilla, 0.63 +/- 0.04, n = 12; tubules, 0.74 +/- 0.04, n = 28; glomeruli, 0.59 +/- 0.03, n = 28; and liver, 0.41 +/- 0.02, n = 28. Enzyme activity was maximal at pH 3.0-3.5 and inhibited more than 90% by pepstatin (6.7 micrograms/ml), suggesting that the enzyme is cathepsin D. In subsequent experiments we measured cathepsin D-like activity in cortex, tubules and glomeruli isolated from rats with puromycin aminonucleoside (PAN)-induced nephrotic syndrome. Treated animals (15 mg of PAN/100g body wt., intraperitoneally) developed proteinuria beginning 4 days after injection and exceeding 900 mg/24h on day 9. In two separate experiments involving 52 animals we observed a significant increase in cathepsin D-like activity in cortex (+82.7%), tubules (+109.6%) and glomeruli (+54.7%) isolated from PAN-treated rats killed during marked proteinuria (day 9, mean total urinary protein excretion: 937 +/- 94 mg/24h). This increase was observed whether the activity was expressed per mg of DNA or per mg of protein. Increased cathepsin D-like activity was first observed in cortex and tubules coincident with the onset of proteinurea (day 4, mean total urinary protein excretion: 112 +/- 23 mg/24h). In contrast with the significant elevation of renal cathepsin D-like activity, the activity (nmol/h per mg of protein) of alpha-L-fucosidase (EC 3.2.1.51), a non-proteolytic enzyme, was markedly decreased in the identical samples used for the measurement of cathepsin D-like activity: cortex (-46.4%); tubules (-46.1%); and glomeruli (-38.5%). In addition to changes in renal enzyme activities, PAN-treated rats excreted large amounts of cathepsin D-like activity in their urine (beginning on day 3) compared with nearly undetectable cathepsin D-like activity in the urine from control rats. The significant increases in glomerular and tubular cathepsin D activity may reflect an important role for this enzyme in the pathophysiology associated with PAN-induced nephrotic syndrome.

Full text

PDF
393

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abboud H. E., Ou S. L., Velosa J. A., Shah S. V., Dousa T. P. Dynamics of renal histamine in normal rat kidney and in nephrosis induced by aminonucleoside of puromycin. J Clin Invest. 1982 Feb;69(2):327–336. doi: 10.1172/JCI110456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhuyan U. N., Welbourn C. R., Evans D. J., Peters T. J. Biochemical studies of the isolated rat glomerulus and the effects of puromycin aminonucleoside administration. Br J Exp Pathol. 1980 Feb;61(1):69–75. [PMC free article] [PubMed] [Google Scholar]
  3. Borooah J., Leaback D. H., Walker P. G. Studies on glucosaminidase. 2. Substrates for N-acetyl-beta-glucosaminidase. Biochem J. 1961 Jan;78(1):106–110. doi: 10.1042/bj0780106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bourdeau J. E., Carone F. A. Protein handling by the renal tubule. Nephron. 1974;13(1):22–34. doi: 10.1159/000180367. [DOI] [PubMed] [Google Scholar]
  5. Caulfield J. P., Reid J. J., Farquhar M. G. Alterations of the glomerular epithelium in acute aminonucleoside nephrosis. Evidence for formation of occluding junctions and epithelial cell detachment. Lab Invest. 1976 Jan;34(1):43–59. [PubMed] [Google Scholar]
  6. DUBACH U. C., RECANT L. Enzymatic activity of the isolated glomerulus in normal and nephrotic rats. J Clin Invest. 1960 Sep;39:1364–1371. doi: 10.1172/JCI104155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Exaire E., Pollak V. E., Pesce A. J., Ooi B. S. Albumin and -globulin in the nephron of the normal rat and following the injection of aminonucleoside. Nephron. 1972;9(1):42–54. doi: 10.1159/000180132. [DOI] [PubMed] [Google Scholar]
  8. Fiszer-Szafarz B., Szafarz D., Guevara de Murillo A. A general, fast, and sensitive micromethod for DNA determination application to rat and mouse liver, rat hepatoma, human leukocytes, chicken fibroblasts, and yeast cells. Anal Biochem. 1981 Jan 1;110(1):165–170. doi: 10.1016/0003-2697(81)90130-5. [DOI] [PubMed] [Google Scholar]
  9. Gang N. F., Mautner W. Studies on the mechanism of the onset of proteinuria in aminonucleoside nephrosis. Lab Invest. 1972 Sep;27(3):310–316. [PubMed] [Google Scholar]
  10. Gossrau R. Peptide and protein handling by proteases in the kidney of laboratory rodents. Acta Histochem Suppl. 1983;28:285–293. [PubMed] [Google Scholar]
  11. Jensen H., Rossing N., Andersen S. B., Jarnum S. Albumin metabolism in the nephrotic syndrome in adults. Clin Sci. 1967 Dec;33(3):445–457. [PubMed] [Google Scholar]
  12. KATZ J., BONORRIS G., SELLERS A. L. ALBUMIN METABOLISM IN AMINONUCLEOSIDE NEPHROTIC RATS. J Lab Clin Med. 1963 Dec;62:910–934. [PubMed] [Google Scholar]
  13. Kirschke H., Langner J., Riemann S., Wiederanders B., Ansorge S., Bohley P. Lysosomal cysteine proteinases. Ciba Found Symp. 1979;(75):15–35. doi: 10.1002/9780470720585.ch2. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lovett D. H., Ryan J. L., Kashgarian M., Sterzel R. B. Lysosomal enzymes in glomerular cells of the rat. Am J Pathol. 1982 May;107(2):161–166. [PMC free article] [PubMed] [Google Scholar]
  16. Lovett D. H., Sterzel R. B., Kashgarian M., Ryan J. L. Neutral proteinase activity produced in vitro by cells of the glomerular mesangium. Kidney Int. 1983 Feb;23(2):342–349. doi: 10.1038/ki.1983.25. [DOI] [PubMed] [Google Scholar]
  17. MENDEL D. Tubular reabsorption of protein in rats with experimental proteinuria. J Physiol. 1961 May;156:544–554. doi: 10.1113/jphysiol.1961.sp006692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maack T. Changes in the activity of acid hydrolases during renal reabsorption of lysozyme. J Cell Biol. 1967 Oct;35(1):268–273. doi: 10.1083/jcb.35.1.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mayer M., Yedgar S., Joffe M., Shafrir E. Urine protease and antiprotease activity in experimental aminonucleoside nephrotoxicity. Nephron. 1981;29(5-6):223–228. doi: 10.1159/000182376. [DOI] [PubMed] [Google Scholar]
  20. Michael A. F., Blau E., Vernier R. L. Glomerular polyanion. Alteration in aminonucleoside nephrosis. Lab Invest. 1970 Dec;23(6):649–657. [PubMed] [Google Scholar]
  21. Nagle R. B., Bulger R. E., Striker G. E., Benditt E. P. Renal tubular effects of the aminonucleoside of puromycin. Lab Invest. 1972 May;26(5):558–565. [PubMed] [Google Scholar]
  22. SHIBKO S., TAPPEL A. L. RAT-KIDNEY LYSOSOMES: ISOLATION AND PROPERTIES. Biochem J. 1965 Jun;95:731–741. doi: 10.1042/bj0950731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. STRAUS W. Changes in droplet fractions from rat kidney cells after intraperitoneal injection of egg white. J Biophys Biochem Cytol. 1957 Nov 25;3(6):933–947. doi: 10.1083/jcb.3.6.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. STRAUS W. Concentration of acid phosphatase, ribonuclease, desoxyribonuclease, beta-glucuronidase, and cathepsin in droplets isolated from the kidney cells of normal rats. J Biophys Biochem Cytol. 1956 Sep 25;2(5):513–521. doi: 10.1083/jcb.2.5.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shah S. V., Northrup T. E., Hui Y. S., Dousa T. P. Action of serotonin (5-hydroxytryptamine) on cyclic nucleotides in glomeruli of rat renal cortex. Kidney Int. 1979 May;15(5):463–472. doi: 10.1038/ki.1979.62. [DOI] [PubMed] [Google Scholar]
  26. Taylor D. G., Price R. G., Robinson D. The distribution of some hydrolases in glomeruli and tubular fragments prepared from rat kidney by zonal centrifugation. Biochem J. 1971 May;122(5):641–645. doi: 10.1042/bj1220641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thomas G. J., Hughes K. T., Davies M. The isolation of three thiol proteinases from human kidney that attack glomerular basement membrane. Biochem Soc Trans. 1980 Oct;8(5):596–597. doi: 10.1042/bst0080596. [DOI] [PubMed] [Google Scholar]
  28. Velosa J. A., Shah S. V., Ou S. L., Abboud H. E., Dousa T. P. Activities of lysosomal enzymes in isolated glomeruli. Alterations in experimental nephrosis. Lab Invest. 1981 Dec;45(6):522–526. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES