Abstract
In islet homogenates, hexokinase-like activity (Km 0.05 mM; Vmax. 1.5 pmol/min per islet) accounts for the major fraction of glucose phosphorylation. Yet the rate of glycolysis in intact islets incubated at low glucose concentrations (e.g. 1.7 mM) sufficient to saturate hexokinase only represents a minor fraction of the glycolytic rate observed at higher glucose concentrations. This apparent discrepancy between enzymic and metabolic data may be attributable, in part at least, to inhibition of hexokinase in intact islets. Hexokinase, which is present in both islet and purified B-cell homogenates, is indeed inhibited by glucose 6-phosphate (Ki 0.13 mM) and glucose 1,6-bisphosphate (Ki approx. 0.2 mM), but not by fructose 2,6-bisphosphate. In intact islets, the steady-state content of glucose 6-phosphate (0.26-0.79 pmol/islet) and glucose 1,6-bisphosphate (5-48 fmol/islet) increases, in a biphasic manner, at increasing concentrations of extracellular glucose (up to 27.8 mM). From these measurements and the intracellular space of the islets, it was estimated that the rate of glucose phosphorylation as catalysed by hexokinase represents, in intact islets, no more than 12-24% of its value in islet homogenates.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anjaneyulu R., Anjaneyulu K., Carpinelli A. R., Sener A., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release: enzymes of mannose metabolism in pancreatic islets. Arch Biochem Biophys. 1981 Nov;212(1):54–62. doi: 10.1016/0003-9861(81)90342-8. [DOI] [PubMed] [Google Scholar]
- Ashcroft S. J., Capito K., Hedeskov C. J. Time course studies of glucose-induced changes in glucose-6-phosphate and fructose-1,6-diphosphate content of mouse and rat pancreatic islets. Diabetologia. 1973 Aug;9(4):299–302. doi: 10.1007/BF01221858. [DOI] [PubMed] [Google Scholar]
- Ashcroft S. J., Hedeskov C. J., Randle P. J. Glucose metabolism in mouse pancreatic islets. Biochem J. 1970 Jun;118(1):143–154. doi: 10.1042/bj1180143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashcroft S. J., Randle P. J. Enzymes of glucose metabolism in normal mouse pancreatic islets. Biochem J. 1970 Aug;119(1):5–15. doi: 10.1042/bj1190005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beitner R., Cohen T. J., Nordenberg J., Haberman S. Glucose 1,6-bisphosphate and the mechanism of the Pasteur effect in diaphragm muscle. The regulation of hexokinase and phosphofructokinase activities. Biochim Biophys Acta. 1979 Aug 22;586(2):266–277. doi: 10.1016/0304-4165(79)90099-0. [DOI] [PubMed] [Google Scholar]
- Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dean P. M. Ultrastructural morphometry of the pancreatic -cell. Diabetologia. 1973 Apr;9(2):115–119. doi: 10.1007/BF01230690. [DOI] [PubMed] [Google Scholar]
- Giroix M. H., Dufrane S. P., Malaisse-Lagae F., Sener A., Malaisse W. J. Fasting-induced impairment of glucose-1,6-bisphosphate synthesis in pancreatic islets. Biochem Biophys Res Commun. 1984 Mar 15;119(2):543–548. doi: 10.1016/s0006-291x(84)80282-x. [DOI] [PubMed] [Google Scholar]
- Gorus F. K., Malaisse W. J., Pipeleers D. G. Differences in glucose handling by pancreatic A- and B-cells. J Biol Chem. 1984 Jan 25;259(2):1196–1200. [PubMed] [Google Scholar]
- Hedeskov C. J., Capito K. The effect of starvation on insulin secretion and glucose metabolism in mouse pancreatic islets. Biochem J. 1974 Jun;140(3):423–433. doi: 10.1042/bj1400423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hellman B., Idahl L. A., Sehlin J., Täljedal I. B. Influence of anoxia on glucose metabolism in pancreatic islets: lack of correlation between fructose-1,6-diphosphate and apparent glycolytic flux. Diabetologia. 1975 Dec;11(6):495–500. doi: 10.1007/BF01222098. [DOI] [PubMed] [Google Scholar]
- Hellman B., Sehlin J., Täljedal I. B. Evidence for mediated transport of glucose in mammalian pancreatic -cells. Biochim Biophys Acta. 1971 Jul 6;241(1):147–154. doi: 10.1016/0005-2736(71)90312-9. [DOI] [PubMed] [Google Scholar]
- Idahl L. A. Dynamics of pancreatic beta-cell responses to glucose. Diabetologia. 1973 Oct;9(5):403–412. doi: 10.1007/BF01239437. [DOI] [PubMed] [Google Scholar]
- Lacy P. E., Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967 Jan;16(1):35–39. doi: 10.2337/diab.16.1.35. [DOI] [PubMed] [Google Scholar]
- Malaisse-Lagae F., Sener A., Malaisse W. J. Phosphoglucomutase: its role in the response of pancreatic islets to glucose epimers and anomers. Biochimie. 1982 Nov-Dec;64(11-12):1059–1063. doi: 10.1016/s0300-9084(82)80387-8. [DOI] [PubMed] [Google Scholar]
- Malaisse W. J., Brisson G., Malaisse-Lagae F. The stimulus-secretion coupling of glucose-induced insulin release. I. Interaction of epinephrine and alkaline earth cations. J Lab Clin Med. 1970 Dec;76(6):895–902. [PubMed] [Google Scholar]
- Malaisse W. J., Hutton J. C., Kawazu S., Sener A. The stimulus-secretion coupling of glucose-induced insulin release. Metabolic effects of menadione in isolated islets. Eur J Biochem. 1978 Jun 1;87(1):121–130. doi: 10.1111/j.1432-1033.1978.tb12357.x. [DOI] [PubMed] [Google Scholar]
- Malaisse W. J., Malaisse-Lagae F., Sener A. Glucose-induced accumulation of fructose-2,6-bisphosphate in pancreatic islets. Diabetes. 1982 Jan;31(1):90–93. doi: 10.2337/diab.31.1.90. [DOI] [PubMed] [Google Scholar]
- Malaisse W. J., Sener A., Koser M., Ravazzola M., Malaisse-Lagae F. The stimulus-secretion coupling of glucose-induced insulin release. Insulin release due to glycogenolysis in glucose-deprived islets. Biochem J. 1977 May 15;164(2):447–454. doi: 10.1042/bj1640447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malaisse W. J., Sener A., Levy J., Herchuelz A. The stimulus-secretion coupling of glucose-induced insulin release. XXII. Qualitative and quantitative aspects of glycolysis in isolated islets. Acta Diabetol Lat. 1976 Sep-Dec;13(5-6):202–215. doi: 10.1007/BF02581118. [DOI] [PubMed] [Google Scholar]
- Malaisse W. J., Sener A., Levy J. The stimulus-secretion coupling of glucose-induced insulin release. Fasting-induced adaptation of key glycolytic enzymes in isolated islets. J Biol Chem. 1976 Mar 25;251(6):1731–1737. [PubMed] [Google Scholar]
- Malaisse W. J., Sener A., Welsh M., Malaisse-Lagae F., Hellerström C., Christophe J. Mechanism of 3-phenylpyruvate-induced insulin release. Metabolic aspects. Biochem J. 1983 Mar 15;210(3):921–927. doi: 10.1042/bj2100921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matschinsky F. M., Ellerman J. E. Metabolism of glucose in the islets of Langerhans. J Biol Chem. 1968 May 25;243(10):2730–2736. [PubMed] [Google Scholar]
- Purich D. L., Fromm H. J., Rudolph F. B. The hexokinases: kinetic, physical, and regulatory properties. Adv Enzymol Relat Areas Mol Biol. 1973;39:249–326. doi: 10.1002/9780470122846.ch4. [DOI] [PubMed] [Google Scholar]
- Sener A., Levy J., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. Does glycolysis control calcium transport in the B-cell? Biochem J. 1976 Jun 15;156(3):521–525. doi: 10.1042/bj1560521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sener A., Malaisse-Lagae F., Malaisse W. J. Glucose-induced accumulation of glucose-1,6-bisphosphate in pancreatic islets : its possible role in the regulation of glycolysis. Biochem Biophys Res Commun. 1982 Feb 11;104(3):1033–1040. doi: 10.1016/0006-291x(82)91353-5. [DOI] [PubMed] [Google Scholar]
- Van de Winkle M., Maes E., Pipeleers D. Islet cell analysis and purification by light scatter and autofluorescence. Biochem Biophys Res Commun. 1982 Jul 30;107(2):525–532. doi: 10.1016/0006-291x(82)91523-6. [DOI] [PubMed] [Google Scholar]