Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Nov 1;223(3):677–685. doi: 10.1042/bj2230677

A re-evaluation of the role of mitochondrial pyruvate transport in the hormonal control of rat liver mitochondrial pyruvate metabolism.

A P Halestrap, A E Armston
PMCID: PMC1144351  PMID: 6095807

Abstract

The inhibitor of mitochondrial pyruvate transport alpha-cyano-beta-(1-phenylindol-3-yl)-acrylate was used to inhibit progressively pyruvate carboxylation by liver mitochondria from control and glucagon-treated rats. The data showed that, contrary to our previous conclusions [Halestrap (1978) Biochem. J. 172, 389-398], pyruvate transport could not regulate metabolism under these conditions. This was confirmed by measuring the intramitochondrial pyruvate concentration, which almost equilibrated with the extramitochondrial pyruvate concentration in control mitochondria, but was significantly decreased in mitochondria from glucagon-treated rats, where rates of pyruvate metabolism were elevated. Computer-simulation studies explain how this is compatible with linear Dixon plots of the inhibition of pyruvate metabolism by alpha-cyano-4-hydroxycinnamate. Parallel measurements of the mitochondrial membrane potential by using [3H]triphenylmethylphosphonium ions showed that it was elevated by about 3 mV after pretreatment of rats with both glucagon and phenylephrine. There was no significant change in the transmembrane pH gradient. It is shown that the increase in pyruvate metabolism can be explained by a stimulation of the respiratory chain, producing an elevation in the protonmotive force and a consequent rise in the intramitochondrial ATP/ADP ratio, which in turn increases pyruvate carboxylase activity. Mild inhibition of the respiratory chain with Amytal reversed the effects of hormone treatment on mitochondrial pyruvate metabolism and ATP concentrations, but not on citrulline synthesis. The significance of these observations for the hormonal regulation of gluconeogenesis from L-lactate in vivo is discussed.

Full text

PDF
677

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam P. A., Haynes R. C., Jr Control of hepatic mitochondrial CO2 fixation by glucagon, epinephrine, and cortisol. J Biol Chem. 1969 Dec 10;244(23):6444–6450. [PubMed] [Google Scholar]
  2. Allan E. H., Chisholm A. B., Titheradge M. A. Hormonal stimulation of mitochondrial pyruvate carboxylation in filipin-treated hepatocytes. Biochem J. 1983 May 15;212(2):417–426. doi: 10.1042/bj2120417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aprille J. R., Nosek M. T., Brennan W. A., Jr Adenine nucleotide content of liver mitochondria increases after glucagon treatment of rats or isolated hepatocytes. Biochem Biophys Res Commun. 1982 Sep 30;108(2):834–839. doi: 10.1016/0006-291x(82)90905-6. [DOI] [PubMed] [Google Scholar]
  4. Armston A. E., Halestrap A. P., Scott R. D. The nature of the changes in liver mitochondrial function induced by glucagon treatment of rats. The effects of intramitochondrial volume, aging and benzyl alcohol. Biochim Biophys Acta. 1982 Sep 15;681(3):429–439. doi: 10.1016/0005-2728(82)90185-2. [DOI] [PubMed] [Google Scholar]
  5. Bryla J., Harris E. J., Plumb J. A. The stimulatory effect of glucagon and dibutyryl cyclic AMP on ureogenesis and gluconeogenesis in relation to the mitochondrial ATP content. FEBS Lett. 1977 Aug 15;80(2):443–448. doi: 10.1016/0014-5793(77)80494-8. [DOI] [PubMed] [Google Scholar]
  6. Bryła J., Niedźwiecka A. Relationship between pyruvate carboxylation and citrulline synthesis in rat liver mitochondria: the effect of ammonia and energy. Int J Biochem. 1979;10(3):235–239. doi: 10.1016/0020-711x(79)90040-5. [DOI] [PubMed] [Google Scholar]
  7. Chan T. M., Bacon C. B., Hill S. A. Glucagon stimulation of liver mitochondrial CO2 fixation utilizing pyruvate generated inside the mitochondria. J Biol Chem. 1979 Sep 25;254(18):8730–8732. [PubMed] [Google Scholar]
  8. Chan T. M., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. J Biol Chem. 1978 Sep 25;253(18):6393–6400. [PubMed] [Google Scholar]
  9. Chisholm A. B., Allan E. H., Titheradge M. A. Regulation of mitochondrial pyruvate carboxylation in isolated hepatocytes by acute insulin treatment. Biochem J. 1983 Aug 15;214(2):451–458. doi: 10.1042/bj2140451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Exton J. H., Park C. R. Control of gluconeogenesis in liver. 3. Effects of L-lactate, pyruvate, fructose, glucagon, epinephrine, and adenosine 3',5'-monophosphate on gluconeogenic intermediates in the perfused rat liver. J Biol Chem. 1969 Mar 25;244(6):1424–1433. [PubMed] [Google Scholar]
  11. Garrison J. C., Borland M. K. Regulation of mitochondrial pyruvate carboxylation and gluconeogenesis in rat hepatocytes via an alpha-adrenergic, adenosine 3':5'-monophosphate-independent mechanism. J Biol Chem. 1979 Feb 25;254(4):1129–1133. [PubMed] [Google Scholar]
  12. Garrison J. C., Haynes R. C., Jr The hormonal control of gluconeogenesis by regulation of mitochondrial pyruvate carboxylation in isolated rat liver cells. J Biol Chem. 1975 Apr 25;250(8):2769–2777. [PubMed] [Google Scholar]
  13. Goldstein F. G., Aprille J. R. Citrulline synthesis: regulation by alterations in the total mitochondrial adenine nucleotide content. Arch Biochem Biophys. 1982 Jan;213(1):7–13. doi: 10.1016/0003-9861(82)90433-7. [DOI] [PubMed] [Google Scholar]
  14. Groen A. K., Vervoorn R. C., Van der Meer R., Tager J. M. Control of gluconeogenesis in rat liver cells. I. Kinetics of the individual enzymes and the effect of glucagon. J Biol Chem. 1983 Dec 10;258(23):14346–14353. [PubMed] [Google Scholar]
  15. Halestrap A. P., Denton R. M. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. Biochem J. 1974 Feb;138(2):313–316. doi: 10.1042/bj1380313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Halestrap A. P. Pyruvate and ketone-body transport across the mitochondrial membrane. Exchange properties, pH-dependence and mechanism of the carrier. Biochem J. 1978 Jun 15;172(3):377–387. doi: 10.1042/bj1720377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Halestrap A. P., Quinlan P. T. The intramitochondrial volume measured using sucrose as an extramitochondrial marker overestimates the true matrix volume determined with mannitol. Biochem J. 1983 Aug 15;214(2):387–393. doi: 10.1042/bj2140387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Halestrap A. P., Scott R. D., Thomas A. P. Mitochondrial pyruvate transport and its hormonal regulation. Int J Biochem. 1980;11(2):97–105. doi: 10.1016/0020-711x(80)90241-4. [DOI] [PubMed] [Google Scholar]
  19. Halestrap A. P. Stimulation of pyruvate transport in metabolizing mitochondria through changes in the transmembrane pH gradient induced by glucagon treatment of rats. Biochem J. 1978 Jun 15;172(3):389–398. doi: 10.1042/bj1720389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Halestrap A. P. Stimulation of the respiratory chain of rat liver mitochondria between cytochrome c1 and cytochrome c by glucagon treatment of rats. Biochem J. 1978 Jun 15;172(3):399–405. doi: 10.1042/bj1720399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Halestrap A. P. The mechanism of the stimulation of pyruvate transport into rat liver mitochondria by glucagon. Biochem Soc Trans. 1977;5(1):216–219. doi: 10.1042/bst0050216. [DOI] [PubMed] [Google Scholar]
  22. Halestrap A. P. The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors. Biochem J. 1975 Apr;148(1):85–96. doi: 10.1042/bj1480085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Halestrap A. P. The nature of the stimulation of the respiratory chain of rat liver mitochondria by glucagon pretreatment of animals. Biochem J. 1982 Apr 15;204(1):37–47. doi: 10.1042/bj2040037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hamman H. C., Haynes R. C., Jr Elevated intramitochondrial adenine nucleotides and mitochondrial function. Arch Biochem Biophys. 1983 May;223(1):85–94. doi: 10.1016/0003-9861(83)90574-x. [DOI] [PubMed] [Google Scholar]
  25. Hensgens H. E., Verhoeven A. J., Meijer A. J. The relationship between intramitochondrial N-acetylglutamate and activity of carbamoyl-phosphate synthetase (ammonia). The effect of glucagon. Eur J Biochem. 1980;107(1):197–205. doi: 10.1111/j.1432-1033.1980.tb04640.x. [DOI] [PubMed] [Google Scholar]
  26. Hoek J. B., Nicholls D. G., Williamson J. R. Determination of the mitochondrial protonmotive force in isolated hepatocytes. J Biol Chem. 1980 Feb 25;255(4):1458–1464. [PubMed] [Google Scholar]
  27. Holian A., Wilson D. F. Relationship of transmembrane pH and electrical gradients with respiration and adenosine 5'-triphosphate synthesis in mitochondria. Biochemistry. 1980 Sep 2;19(18):4213–4221. doi: 10.1021/bi00559a012. [DOI] [PubMed] [Google Scholar]
  28. Jensen C. B., Sistare F. D., Hamman H. C., Haynes R. C., Jr Stimulation of mitochondrial functions by glucagon treatment. Evidence that effects are not artifacts of mitochondrial isolation. Biochem J. 1983 Mar 15;210(3):819–827. doi: 10.1042/bj2100819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Martin A. D., Allan E. H., Titheradge M. A. The stimulation of mitochondrial pyruvate carboxylation after dexamethasone treatment of rats. Biochem J. 1984 Apr 1;219(1):107–115. doi: 10.1042/bj2190107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Martin A. D., Titheradge M. A. Hormonal stimulation of gluconeogenesis through increased mitochondrial metabolic flux. Biochem Soc Trans. 1983 Jan;11(1):78–81. doi: 10.1042/bst0110078. [DOI] [PubMed] [Google Scholar]
  31. Prpić V., Spencer T. L., Bygrave F. L. Stable enhancement of calcium retention in mitochondria isolated from rat liver after the administration of glucagon to the intact animal. Biochem J. 1978 Dec 15;176(3):705–714. doi: 10.1042/bj1760705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Quinlan P. T., Thomas A. P., Armston A. E., Halestrap A. P. Measurement of the intramitochondrial volume in hepatocytes without cell disruption and its elevation by hormones and valinomycin. Biochem J. 1983 Aug 15;214(2):395–404. doi: 10.1042/bj2140395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rabier D., Briand P., Petit F., Parvy P., Kamoun P., Cathelineau L. Acute effects of glucagon on citrulline biosynthesis. Biochem J. 1982 Sep 15;206(3):627–631. doi: 10.1042/bj2060627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rognstad R. The role of mitochondrial pyruvate transport in the control of lactate gluconeogenesis. Int J Biochem. 1983;15(12):1417–1421. doi: 10.1016/0020-711x(83)90073-3. [DOI] [PubMed] [Google Scholar]
  35. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
  36. Scrutton M. C., White M. D. Pyruvate carboxylase. Inhibition of the mammalian and avian liver enzymes by alpha-ketoglutarate and L-glutamate. J Biol Chem. 1974 Sep 10;249(17):5405–5415. [PubMed] [Google Scholar]
  37. Shearman M. S., Halestrap A. P. The concentration of the mitochondrial pyruvate carrier in rat liver and heart mitochondria determined with alpha-cyano-beta-(1-phenylindol-3-yl)acrylate. Biochem J. 1984 Nov 1;223(3):673–676. doi: 10.1042/bj2230673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shulman R. G., Brown T. R., Ugurbil K., Ogawa S., Cohen S. M., den Hollander J. A. Cellular applications of 31P and 13C nuclear magnetic resonance. Science. 1979 Jul 13;205(4402):160–166. doi: 10.1126/science.36664. [DOI] [PubMed] [Google Scholar]
  39. Siess E. A., Brocks D. G., Lattke H. K., Wieland O. H. Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate. Biochem J. 1977 Aug 15;166(2):225–235. doi: 10.1042/bj1660225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Siess E. A., Fahimi F. M., Wieland O. H. Evidence that glucagon stabilizes rather than activates mitochondrial functions in rat liver. Hoppe Seylers Z Physiol Chem. 1981 Dec;362(12):1643–1651. doi: 10.1515/bchm2.1981.362.2.1643. [DOI] [PubMed] [Google Scholar]
  41. Siess E. A., Wieland O. H. Early kinetics of glucagon action in isolated hepatocytes at the mitochondrial level. Eur J Biochem. 1980 Sep;110(1):203–210. doi: 10.1111/j.1432-1033.1980.tb04856.x. [DOI] [PubMed] [Google Scholar]
  42. Siess E. A., Wieland O. H. Glucagon-induced stimulation of 2-oxoglutarate metabolism in mitochondria from rat liver. FEBS Lett. 1978 Sep 15;93(2):301–306. doi: 10.1016/0014-5793(78)81126-0. [DOI] [PubMed] [Google Scholar]
  43. Strzelecki T., Thomas J. A., Koch C. D., LaNoue K. F. The effect of hormones on proton compartmentation in hepatocytes. J Biol Chem. 1984 Apr 10;259(7):4122–4129. [PubMed] [Google Scholar]
  44. Taylor W. M., Prpić V., Exton J. H., Bygrave F. L. Stable changes to calcium fluxes in mitochondria isolated from rat livers perfused with alpha-adrenergic agonists and with glucagon. Biochem J. 1980 May 15;188(2):443–450. doi: 10.1042/bj1880443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Thomas A. P., Halestrap A. P. Computer stimulation of the effects of alpha-cyano-4-hydroxycinnamate on gluconeogenesis from L-lactate in rat liver cells. Biochem J. 1981 Sep 15;198(3):561–564. doi: 10.1042/bj1980561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tischler M. E., Hecht P., Williamson J. R. Determination of mitochondrial/cytosolic metabolite gradients in isolated rat liver cells by cell disruption. Arch Biochem Biophys. 1977 May;181(1):278–293. doi: 10.1016/0003-9861(77)90506-9. [DOI] [PubMed] [Google Scholar]
  47. Titheradge M. A., Coore H. G. Hormonal regulation of liver mitochondrial pyruvate carrier in relation to gluconeogenesis and lipogenesis. FEBS Lett. 1976 Nov 15;72(1):73–78. doi: 10.1016/0014-5793(76)80901-5. [DOI] [PubMed] [Google Scholar]
  48. Titheradge M. A., Coore H. G. The mitochondrial pyruvate carrier, its exchange properties and its regulation by glucagon. FEBS Lett. 1976 Mar 15;63(1):45–50. doi: 10.1016/0014-5793(76)80191-3. [DOI] [PubMed] [Google Scholar]
  49. Titheradge M. A., Haynes R. C., Jr The control of uncoupler-activated ATPase activity in rat liver mitochondria by adenine nucleotide transport. The effect of glucagon treatment. J Biol Chem. 1980 Feb 25;255(4):1471–1477. [PubMed] [Google Scholar]
  50. Titheradge M. A., Haynes R. C., Jr The hormonal stimulation of ureogenesis in isolated hepatocytes through increases in mitochondrial ATP production. Arch Biochem Biophys. 1980 Apr 15;201(1):44–55. doi: 10.1016/0003-9861(80)90485-3. [DOI] [PubMed] [Google Scholar]
  51. Titheradge M. A., Stringer J. L., Haynes R. C., Jr The stimulation of the mitochondrial uncoupler-dependent ATPase in isolated hepatocytes by catecholamines and glucagon and its relationship to gluconeogenesis. Eur J Biochem. 1979 Dec;102(1):117–124. doi: 10.1111/j.1432-1033.1979.tb06271.x. [DOI] [PubMed] [Google Scholar]
  52. Verhoeven A. J., Hensgens H. E., Meijer A. J., Tager J. M. On the nature of the stimulation by glucagon of citrulline synthesis in rat-liver mitochondria. FEBS Lett. 1982 Apr 19;140(2):270–272. doi: 10.1016/0014-5793(82)80911-3. [DOI] [PubMed] [Google Scholar]
  53. Walsh D. A., Cooper R. H., Denton R. M., Bridges B. J., Randle P. J. The elementary reactions of the pig heart pyruvate dehydrogenase complex. A study of the inhibition by phosphorylation. Biochem J. 1976 Jul 1;157(1):41–67. doi: 10.1042/bj1570041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wanders R. J., Groen A. K., Meijer A. J., Tager J. M. Determination of the free-energy difference of the adenine nucleotide translocator reaction in rat-liver mitochondria using intra- and extramitochondrial ATP-utilizing reactions. FEBS Lett. 1981 Sep 28;132(2):201–206. doi: 10.1016/0014-5793(81)81160-x. [DOI] [PubMed] [Google Scholar]
  55. Whipps D. E., Halestrap A. P. Rat liver mitochondria prepared in mannitol media demonstrate increased mitochondrial volumes compared with mitochondria prepared in sucrose media. Relationship to the effect of glucagon on mitochondrial function. Biochem J. 1984 Jul 1;221(1):147–152. doi: 10.1042/bj2210147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Williamson J. R., Steinman R., Coll K., Rich T. L. Energetics of citrulline synthesis by rat liver mitochondria. J Biol Chem. 1981 Jul 25;256(14):7287–7297. [PubMed] [Google Scholar]
  57. Yamazaki R. K. Glucagon stimulation of mitochondrial respiration. J Biol Chem. 1975 Oct 10;250(19):7924–7930. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES