Abstract
Starvation does not change the actual activity per g of tissue of the branched-chain 2-oxo acid dehydrogenase in skeletal muscles, but affects the total activity to a different extent, depending on the muscle type. The activity state (proportion of the enzyme present in the active state) does not change in diaphragm and decreases in quadriceps muscle. Liver and kidney show an increase of both activities, without a change of the activity state. In heart and brain no changes were observed. Related to organ wet weights, the actual activity present in the whole-body muscle mass decreases on starvation, whereas the activities present in liver and kidney do not change, or increase slightly. Exercise (treadmill-running) of untrained rats for 15 and 60 min causes a small increase of the actual activity and the activity state of the branched-chain 2-oxo acid dehydrogenase complex in heart and skeletal muscle. Exercise for 1 h, furthermore, increased the actual and the total activity in liver and kidney, without a change of the activity state. In brain no changes were observed. The actual activity per g of tissue in skeletal muscle was less than 2% of that in liver and kidney, both before and after exercise and starvation. Our data indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and to a smaller extent in kidney and skeletal muscle in fed, starved and exercised rats.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abumrad N. N., Robinson R. P., Gooch B. R., Lacy W. W. The effect of leucine infusion on substrate flux across the human forearm. J Surg Res. 1982 May;32(5):453–463. doi: 10.1016/0022-4804(82)90126-3. [DOI] [PubMed] [Google Scholar]
- Adibi S. A., Krzysik B. A., Morse E. L., Amin P. M., Allen E. R. Oxidative energy metabolism in the skeletal muscle: biochemical and ultrastructural evidence for adaptive changes. J Lab Clin Med. 1974 Apr;83(4):548–562. [PubMed] [Google Scholar]
- Ahlborg G., Felig P., Hagenfeldt L., Hendler R., Wahren J. Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J Clin Invest. 1974 Apr;53(4):1080–1090. doi: 10.1172/JCI107645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armstrong R. B., Laughlin M. H., Rome L., Taylor C. R. Metabolism of rats running up and down an incline. J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):518–521. doi: 10.1152/jappl.1983.55.2.518. [DOI] [PubMed] [Google Scholar]
- Buse M. G., Jursinic S., Reid S. S. Regulation of branched-chain amino acid oxidation in isolated muscles, nerves and aortas of rats. Biochem J. 1975 Jun;148(3):363–374. doi: 10.1042/bj1480363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook K. G., Lawson R., Yeaman S. J., Aitken A. Amino acid sequence at the major phosphorylation site on bovine kidney branched-chain 2-oxoacid dehydrogenase complex. FEBS Lett. 1983 Nov 28;164(1):47–50. doi: 10.1016/0014-5793(83)80016-7. [DOI] [PubMed] [Google Scholar]
- Cook K. G., Lawson R., Yeaman S. J. Multi-site phosphorylation of bovine kidney branched-chain 2-oxoacid dehydrogenase complex. FEBS Lett. 1983 Jun 27;157(1):59–62. doi: 10.1016/0014-5793(83)81116-8. [DOI] [PubMed] [Google Scholar]
- DiMarco J. P., Hoppel C. Hepatic mitochondrial function in ketogenic states. Diabetes, starvation, and after growth hormone administration. J Clin Invest. 1975 Jun;55(6):1237–1244. doi: 10.1172/JCI108042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dohm G. L., Williams R. T., Kasperek G. J., van Rij A. M. Increased excretion of urea and N tau -methylhistidine by rats and humans after a bout of exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jan;52(1):27–33. doi: 10.1152/jappl.1982.52.1.27. [DOI] [PubMed] [Google Scholar]
- Elia M., Farrell R., Ilic V., Smith R., Williamson D. H. The removal of infused leucine after injury, starvation and other conditions in man. Clin Sci (Lond) 1980 Oct;59(4):275–283. doi: 10.1042/cs0590275. [DOI] [PubMed] [Google Scholar]
- Elia M., Livesey G. Effects of ingested steak and infused leucine on forelimb metabolism in man and the fate of the carbon skeletons and amino groups of branched-chain amino acids. Clin Sci (Lond) 1983 May;64(5):517–526. doi: 10.1042/cs0640517. [DOI] [PubMed] [Google Scholar]
- Fatania H. R., Lau K. S., Randle P. J. Activation of phosphorylated branched chain 2-oxoacid dehydrogenase complex. FEBS Lett. 1982 Oct 4;147(1):35–39. doi: 10.1016/0014-5793(82)81006-5. [DOI] [PubMed] [Google Scholar]
- Gillim S. E., Paxton R., Cook G. A., Harris R. A. Activity state of the branched chain alpha-ketoacid dehydrogenase complex in heart, liver, and kidney of normal, fasted, diabetic, and protein-starved rats. Biochem Biophys Res Commun. 1983 Feb 28;111(1):74–81. doi: 10.1016/s0006-291x(83)80119-3. [DOI] [PubMed] [Google Scholar]
- Glatz J. F., Veerkamp J. H. Palmitate oxidation by intact preparations of skeletal muscle. Biochim Biophys Acta. 1982 Nov 12;713(2):230–239. doi: 10.1016/0005-2760(82)90240-5. [DOI] [PubMed] [Google Scholar]
- Goldberg A. L., Chang T. W. Regulation and significance of amino acid metabolism in skeletal muscle. Fed Proc. 1978 Jul;37(9):2301–2307. [PubMed] [Google Scholar]
- Goldberg A. L., Odessey R. Oxidation of amino acids by diaphragms from fed and fasted rats. Am J Physiol. 1972 Dec;223(6):1384–1391. doi: 10.1152/ajplegacy.1972.223.6.1384. [DOI] [PubMed] [Google Scholar]
- Gollnick P. D. Free fatty acid turnover and the availability of substrates as a limiting factor in prolonged exercise. Ann N Y Acad Sci. 1977;301:64–71. doi: 10.1111/j.1749-6632.1977.tb38186.x. [DOI] [PubMed] [Google Scholar]
- Hagg S. A., Morse E. L., Adibi S. A. Effect of exercise on rates of oxidation, turnover, and plasma clearance of leucine in human subjects. Am J Physiol. 1982 Jun;242(6):E407–E410. doi: 10.1152/ajpendo.1982.242.6.E407. [DOI] [PubMed] [Google Scholar]
- Hennig G., Löffler G., Wieland O. H. Active and inactive forms of pyruvatedehydrogenase in skeletal muscle as related to the metabolic and functional state of the muscle cell. FEBS Lett. 1975 Nov 15;59(2):142–145. doi: 10.1016/0014-5793(75)80361-9. [DOI] [PubMed] [Google Scholar]
- Hutson S. M., Harper A. E. Blood and tissue branched-chain amino and alpha-keto acid concentrations: effect of diet, starvation, and disease. Am J Clin Nutr. 1981 Feb;34(2):173–183. doi: 10.1093/ajcn/34.2.173. [DOI] [PubMed] [Google Scholar]
- Hutson S. M., Zapalowski C., Cree T. C., Harper A. E. Regulation of leucine and alpha-ketoisocaproic acid metabolism in skeletal muscle. Effects of starvation and insulin. J Biol Chem. 1980 Mar 25;255(6):2418–2426. [PubMed] [Google Scholar]
- Kerbey A. L., Randle P. J., Cooper R. H., Whitehouse S., Pask H. T., Denton R. M. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide. Biochem J. 1976 Feb 15;154(2):327–348. doi: 10.1042/bj1540327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khatra B. S., Chawla R. K., Sewell C. W., Rudman D. Distribution of branched-chain alpha-keto acid dehydrogenases in primate tissues. J Clin Invest. 1977 Mar;59(3):558–564. doi: 10.1172/JCI108671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kobayashi K., Neely J. R. Mechanism of pyruvate dehydrogenase activation by increased cardiac work. J Mol Cell Cardiol. 1983 Jun;15(6):369–382. doi: 10.1016/0022-2828(83)90321-8. [DOI] [PubMed] [Google Scholar]
- Lemon P. W., Nagle F. J. Effects of exercise on protein and amino acid metabolism. Med Sci Sports Exerc. 1981;13(3):141–149. [PubMed] [Google Scholar]
- Lemon P. W., Nagle F. J., Mullin J. P., Benevenga N. J. In vivo leucine oxidation at rest and during two intensities of exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Oct;53(4):947–954. doi: 10.1152/jappl.1982.53.4.947. [DOI] [PubMed] [Google Scholar]
- Livesey G. Bovine serum albumin decreases 4-methyl-2-oxovalerate utilization by isolated rat hepatocytes. Biochem J. 1983 Jun 15;212(3):655–658. doi: 10.1042/bj2120655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Livesey G., Lund P. Binding of branched-chain 2-oxo acids to bovine serum albumin. Biochem J. 1982 Apr 15;204(1):265–272. doi: 10.1042/bj2040265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Livesey G., Lund P. Enzymic determination of branched-chain amino acids and 2-oxoacids in rat tissues. Transfer of 2-oxoacids from skeletal muscle to liver in vivo. Biochem J. 1980 Jun 15;188(3):705–713. doi: 10.1042/bj1880705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millward D. J., Davies C. T., Halliday D., Wolman S. L., Matthews D., Rennie M. Effect of exercise on protein metabolism in humans as explored with stable isotopes. Fed Proc. 1982 Aug;41(10):2686–2691. [PubMed] [Google Scholar]
- Nissen S. L., Miles J. M., Gerich J. E., Haymond M. W. Regulation of alpha-ketoisocaproate binding to albumin in vivo by free fatty acids. Am J Physiol. 1982 Jan;242(1):E67–E71. doi: 10.1152/ajpendo.1982.242.1.E67. [DOI] [PubMed] [Google Scholar]
- Nissen S., Haymond M. W. Effects of fasting on flux and interconversion of leucine and alpha-ketoisocaproate in vivo. Am J Physiol. 1981 Jul;241(1):E72–E75. doi: 10.1152/ajpendo.1981.241.1.E72. [DOI] [PubMed] [Google Scholar]
- O'Hara D. S., Curfman G. D., Trumbull C. G., Smith T. W. A procedure for measuring the contributions of intracellular and extracellular tyrosine pools to the rate of myocardial protein synthesis. J Mol Cell Cardiol. 1981 Oct;13(10):925–940. doi: 10.1016/0022-2828(81)90291-1. [DOI] [PubMed] [Google Scholar]
- Odessey R., Goldberg A. L. Oxidation of leucine by rat skeletal muscle. Am J Physiol. 1972 Dec;223(6):1376–1383. doi: 10.1152/ajplegacy.1972.223.6.1376. [DOI] [PubMed] [Google Scholar]
- Paul H. S., Adibi S. A. Assessment of effect of starvation, glucose, fatty acids and hormones on alpha-decarboxylation of leucine in skeletal muscle of rat. J Nutr. 1976 Aug;106(8):1079–1088. doi: 10.1093/jn/106.8.1079. [DOI] [PubMed] [Google Scholar]
- Paul H. S., Adibi S. A. Leucine oxidation in diabetes and starvation: effects of ketone bodies on branched-chain amino acid oxidation in vitro. Metabolism. 1978 Feb;27(2):185–200. doi: 10.1016/0026-0495(78)90164-6. [DOI] [PubMed] [Google Scholar]
- Peuhkurinen K. J., Hiltunen J. K., Hassinen I. E. Metabolic compartmentation of pyruvate in the isolated perfused rat heart. Biochem J. 1983 Jan 15;210(1):193–198. doi: 10.1042/bj2100193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randle P. J. Mitochondrial 2-oxoacid dehydrogenase complexes of animal tissues. Philos Trans R Soc Lond B Biol Sci. 1983 Jul 5;302(1108):47–57. doi: 10.1098/rstb.1983.0037. [DOI] [PubMed] [Google Scholar]
- Rannels D. E., Low R. B., Youdale T., Volkin E., Longmore W. J. Use of radioisotopes in quantitative studies of lung metabolism. Fed Proc. 1982 Oct;41(12):2833–2839. [PubMed] [Google Scholar]
- Rennie M. J., Edwards R. H., Halliday D., Matthews D. E., Wolman S. L., Millward D. J. Muscle protein synthesis measured by stable isotope techniques in man: the effects of feeding and fasting. Clin Sci (Lond) 1982 Dec;63(6):519–523. doi: 10.1042/cs0630519. [DOI] [PubMed] [Google Scholar]
- Rennie M. J., Edwards R. H., Krywawych S., Davies C. T., Halliday D., Waterlow J. C., Millward D. J. Effect of exercise on protein turnover in man. Clin Sci (Lond) 1981 Nov;61(5):627–639. doi: 10.1042/cs0610627. [DOI] [PubMed] [Google Scholar]
- Schadewaldt P., Münch U., Staib W. Evidence for the compartmentation of pyruvate metabolism in perfused rat skeletal muscle. Biochem J. 1983 Dec 15;216(3):761–764. doi: 10.1042/bj2160761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneible P. A., Airhart J., Low R. B. Differential compartmentation of leucine for oxidation and for protein synthesis in cultured skeletal muscle. J Biol Chem. 1981 May 25;256(10):4888–4894. [PubMed] [Google Scholar]
- Schneible P. A., Young R. B. Leucine pools in normal and dystrophic chicken skeletal muscle cells in culture. J Biol Chem. 1984 Feb 10;259(3):1436–1440. [PubMed] [Google Scholar]
- Sherwin R. S. Effect of starvation on the turnover and metabolic response to leucine. J Clin Invest. 1978 Jun;61(6):1471–1481. doi: 10.1172/JCI109067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinnick F. L., Harper A. E. Branched-chain amino acid oxidation by isolated rat tissue preparations. Biochim Biophys Acta. 1976 Jul 21;437(2):477–486. doi: 10.1016/0304-4165(76)90016-7. [DOI] [PubMed] [Google Scholar]
- Stirewalt W. S., Low R. B. Effects of insulin in vitro on protein turnover in rat epitrochlearis muscle. Biochem J. 1983 Feb 15;210(2):323–330. doi: 10.1042/bj2100323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas L. K., Ittmann M., Cooper C. The role of leucine in ketogenesis in starved rats. Biochem J. 1982 May 15;204(2):399–403. doi: 10.1042/bj2040399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tischler M. E., Goldberg A. L. Amino acid degradation and effect of leucine on pyruvate oxidation in rat atrial muscle. Am J Physiol. 1980 May;238(5):E480–E486. doi: 10.1152/ajpendo.1980.238.5.E480. [DOI] [PubMed] [Google Scholar]
- Veerkamp J. H., Van Moerkerk H. T., Glatz J. F., Van Hinsbergh V. W. Incomplete palmitate oxidation in cell-free systems of rat and human muscles. Biochim Biophys Acta. 1983 Oct 11;753(3):399–410. doi: 10.1016/0005-2760(83)90064-4. [DOI] [PubMed] [Google Scholar]
- Wagenmakers A. J., Schepens J. T., Veldhuizen J. A., Veerkamp J. H. The activity state of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues. Biochem J. 1984 May 15;220(1):273–281. doi: 10.1042/bj2200273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagenmakers A. J., Veerkamp J. H. Degradation of branched-chain amino acids and their derived 2-oxo acids and fatty acids in human and rat heart and skeletal muscle. Biochem Med. 1982 Aug;28(1):16–31. doi: 10.1016/0006-2944(82)90051-5. [DOI] [PubMed] [Google Scholar]
- Wagenmakers A. J., Veerkamp J. H. The effect of starvation on branched-chain 2-oxo acid oxidation in rat muscle. Biochem J. 1984 Apr 1;219(1):253–260. doi: 10.1042/bj2190253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallyn C. S., Vidrich A., Airhart J., Khairallah E. A. Analysis of the specific radioactivity of valine isolated from aminoacyl-transfer ribonucleic acid of rat liver. Biochem J. 1974 Jun;140(3):545–548. doi: 10.1042/bj1400545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welch H. G., Stainsby W. N. Oxygen debt in contracting dog skeletal muscle in situ. Respir Physiol. 1967 Oct;3(2):229–242. doi: 10.1016/0034-5687(67)90013-8. [DOI] [PubMed] [Google Scholar]
- Wheatley D. N. On the problem of linear incorporation of amino acids into cell protein. Experientia. 1982 Jul 15;38(7):818–820. doi: 10.1007/BF01972291. [DOI] [PubMed] [Google Scholar]
- White T. P., Brooks G. A. [U-14C]glucose, -alanine, and -leucine oxidation in rats at rest and two intensities of running. Am J Physiol. 1981 Feb;240(2):E155–E165. doi: 10.1152/ajpendo.1981.240.2.E155. [DOI] [PubMed] [Google Scholar]
- Wieland O. H. The mammalian pyruvate dehydrogenase complex: structure and regulation. Rev Physiol Biochem Pharmacol. 1983;96:123–170. doi: 10.1007/BFb0031008. [DOI] [PubMed] [Google Scholar]
- Wolfe R. R., Goodenough R. D., Wolfe M. H., Royle G. T., Nadel E. R. Isotopic analysis of leucine and urea metabolism in exercising humans. J Appl Physiol Respir Environ Exerc Physiol. 1982 Feb;52(2):458–466. doi: 10.1152/jappl.1982.52.2.458. [DOI] [PubMed] [Google Scholar]
