Abstract
The effect of dicyclohexylamine on seven freshly isolated bacterial strains of mastitis pathogens was studied. Streptococcus uberis was the most sensitive strain investigated, since 5 mM-dicyclohexylamine totally arrested its growth and 1.25 mM of the drug caused 60% growth inhibition. The Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa strains were also sensitive to the drug, but less so than Strep. uberis, since 5 mM drug caused only partial inhibition of growth. Micrococcus sp. and Klebsiella sp. grew in the presence of 10.0 mM-dicyclohexylamine, and, finally the growth of Streptococcus agalactiae was not at all affected by dicyclohexylamine. These different sensitivities towards dicyclohexylamine in vivo were paralleled by different sensitivities of the bacteria's spermidine synthase to the drug in vitro, and also by the ability of the drug to lower spermidine concentration in bacterial cells. Spermidine synthase from sensitive bacteria was inhibited by more than 90% by 50 microM-dicyclohexylamine in vitro, and the concentration of spermidine was decreased in E. coli and Ps. aeruginosa by 70% and in Strep. uberis by 95%, whereas in Strep. agalactiae 5 mM-dicyclohexylamine did not affect the concentration of spermidine at all. Dicyclohexylamine treatment led to the accumulation of putrescine in Strep. uberis. Spermidine synthesis catalysed by the extracts of Micrococcus sp. required 500 microM-dicyclohexylamine for 90% inhibition, and Strep. agalactiae contained a spermidine synthase that was still active at 1000 microM-dicyclohexylamine, The observed inhibition of growth was totally reversed by adding 50 microM-spermidine (final concentration) to the medium. Putrescine reversed the inhibition only when bacteria had a spermidine synthase activity insensitive to dicyclohexylamine. Spermine did not overcome the inhibition of growth caused by dicyclohexylamine, probably because it was not taken up by the bacterial cells used in this study. The inhibition of the growth by dicyclohexylamine (even in the case of Strep. uberis) was reversible in the sense that addition of 50 microM-spermidine 18 h after dicyclohexylamine still restored the growth rate of untreated controls.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bitonti A. J., Kelly S. E., McCann P. P. Regulation of growth and macromolecular synthesis by putrescine and spermidine in Pseudomonas aeruginosa. Life Sci. 1984 Apr 16;34(16):1513–1520. doi: 10.1016/0024-3205(84)90605-2. [DOI] [PubMed] [Google Scholar]
- Bitonti A. J., McCann P. P., Sjoerdsma A. Restriction of bacterial growth by inhibition of polyamine biosynthesis by using monofluoromethylornithine, difluoromethylarginine and dicyclohexylammonium sulphate. Biochem J. 1982 Nov 15;208(2):435–441. doi: 10.1042/bj2080435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowman W. H., Tabor C. W., Tabor H. Spermidine biosynthesis. Purification and properties of propylamine transferase from Escherichia coli. J Biol Chem. 1973 Apr 10;248(7):2480–2486. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cohn M. S., Tabor C. W., Tabor H. Isolation and characterization of Saccharomyces cerevisiae mutants deficient in S-adenosylmethionine decarboxylase, spermidine, and spermine. J Bacteriol. 1978 Apr;134(1):208–213. doi: 10.1128/jb.134.1.208-213.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohn M. S., Tabor C. W., Tabor H. Regulatory mutations affecting ornithine decarboxylase activity in Saccharomyces cerevisiae. J Bacteriol. 1980 Jun;142(3):791–799. doi: 10.1128/jb.142.3.791-799.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Echandi G., Algranati I. D. Defective 30S ribosomal particles in a polyamine auxotroph of Escherichia coli. Biochem Biophys Res Commun. 1975 Dec 1;67(3):1185–1191. doi: 10.1016/0006-291x(75)90798-6. [DOI] [PubMed] [Google Scholar]
- Hafner E. W., Tabor C. W., Tabor H. Mutants of Escherichia coli that do not contain 1,4-diaminobutane (putrescine) or spermidine. J Biol Chem. 1979 Dec 25;254(24):12419–12426. [PubMed] [Google Scholar]
- Hibasami H., Tanaka M., Nagai J., Ikeda T. Dicyclohexylamine, a potent inhibitor of spermidine synthase in mammalian cells. FEBS Lett. 1980 Jul 11;116(1):99–101. doi: 10.1016/0014-5793(80)80537-0. [DOI] [PubMed] [Google Scholar]
- Igarashi K., Kashiwagi K., Kishida K., Kakegawa T., Hirose S. Decrease in the S1 protein of 30-S ribosomal subunits in polyamine-requiring mutants of Escherichia coli grown in the absence of polyamines. Eur J Biochem. 1981;114(1):127–131. doi: 10.1111/j.1432-1033.1981.tb06182.x. [DOI] [PubMed] [Google Scholar]
- Jänne J., Pösö H., Raina A. Polyamines in rapid growth and cancer. Biochim Biophys Acta. 1978 Apr 6;473(3-4):241–293. doi: 10.1016/0304-419x(78)90015-x. [DOI] [PubMed] [Google Scholar]
- Kallio A., McCann P. P. Difluoromethylornithine irreversibly inactivates ornithine decarboxylase of Pseudomonas aeruginosa, but does not inhibit the enzymes of Escherichia coli. Biochem J. 1981 Oct 15;200(1):69–75. doi: 10.1042/bj2000069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mattila T., Maisi P., Sandholm M. Haem compounds as bacterial growth promoters in whey: a possible application to bovine mastitis. Res Vet Sci. 1984 Jan;36(1):52–56. [PubMed] [Google Scholar]
- Morris D. R., Jorstad C. M. Growth and macromolecular composition of a mutant of Escherichia coli during polyamine limitation. J Bacteriol. 1973 Jan;113(1):271–277. doi: 10.1128/jb.113.1.271-277.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paulin L., Pösö H. Ornithine decarboxylase activity from an extremely thermophilic bacterium, Clostridium thermohydrosulfuricum. Effect of GTP analogues on enzyme activity. Biochim Biophys Acta. 1983 Jan 12;742(1):197–205. doi: 10.1016/0167-4838(83)90377-1. [DOI] [PubMed] [Google Scholar]
- Paulin L., Vehmaanperä J., Nykänen I., Pösö H. GTP-insensitive ornithine decarboxylase in acetobacteria able to synthesize spermine. Biochem Biophys Res Commun. 1983 Jul 29;114(2):779–784. doi: 10.1016/0006-291x(83)90849-5. [DOI] [PubMed] [Google Scholar]
- Pegg A. E., Bitonti A. J., McCann P. P., Coward J. K. Inhibition of bacterial aminopropyltransferases by S-adenosyl-1,8-diamino-3-thiooctane and by dicyclohexylamine. FEBS Lett. 1983 May 8;155(2):192–196. doi: 10.1016/0014-5793(82)80600-5. [DOI] [PubMed] [Google Scholar]
- Pegg A. E., McCann P. P. Polyamine metabolism and function. Am J Physiol. 1982 Nov;243(5):C212–C221. doi: 10.1152/ajpcell.1982.243.5.C212. [DOI] [PubMed] [Google Scholar]
- Pegg A. E., Pösö H., Shuttleworth K., Bennett R. A. Effect of inhibition of polyamine synthesis on the content of decarboxylated S-adenosylmethionine. Biochem J. 1982 Feb 15;202(2):519–526. doi: 10.1042/bj2020519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pöso H., Paulin L., Brander E. Specific inhibition of spermidine synthase from mycobacteria by ethambutol. Lancet. 1983 Dec 17;2(8364):1418–1418. doi: 10.1016/s0140-6736(83)90943-1. [DOI] [PubMed] [Google Scholar]
- Pösö H., Jänne J. Inhibition of polyamine accumulation and deoxyribonucleic acid synthesis in regenerating rat liver. Biochem J. 1976 Aug 15;158(2):485–488. doi: 10.1042/bj1580485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pösö H., Kuosmanen M. Spermidine and spermine stimulate the activity of T4-DNA ligase. Biochem Biophys Res Commun. 1983 Nov 30;117(1):217–222. doi: 10.1016/0006-291x(83)91563-2. [DOI] [PubMed] [Google Scholar]
- Pösö H., Pegg A. E. Effect of alpha-difluoromethylornithine on polyamine and DNA synthesis in regenerating rat liver: reversal of inhibition of DNA synthesis by putrescine. Biochim Biophys Acta. 1982 Feb 26;696(2):179–186. doi: 10.1016/0167-4781(82)90026-4. [DOI] [PubMed] [Google Scholar]
- Raina A., Cohen S. S. Polyamines and RNA synthesis in a polyauxotrophic strain of E. coli. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1587–1593. doi: 10.1073/pnas.55.6.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raina A., Eloranta T., Pajula R. L. Rapid assays for putrescine aminopropyltransferase (spermidine synthase) and spermidine aminopropyltransferase (spermine synthase). Methods Enzymol. 1983;94:257–260. doi: 10.1016/s0076-6879(83)94044-2. [DOI] [PubMed] [Google Scholar]
- Sakai T. T., Cohen S. S. Effects of polyamines on the structure and reactivity of tRNA. Prog Nucleic Acid Res Mol Biol. 1976;17:15–42. doi: 10.1016/s0079-6603(08)60064-1. [DOI] [PubMed] [Google Scholar]
- Sjoerdsma A. Suicide enzyme inhibitors as potential drugs. Clin Pharmacol Ther. 1981 Jul;30(1):3–22. doi: 10.1038/clpt.1981.121. [DOI] [PubMed] [Google Scholar]
- Tabor C. W. Mutants of Saccharomyces cerevisiae deficient in polyamine biosynthesis: studies on the regulation of ornithine decarboxylase. Med Biol. 1981 Dec;59(5-6):272–278. [PubMed] [Google Scholar]
- Tabor C. W., Tabor H. 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu Rev Biochem. 1976;45:285–306. doi: 10.1146/annurev.bi.45.070176.001441. [DOI] [PubMed] [Google Scholar]
- Tabor C. W., Tabor H., Hafner E. W. Escherichia coli mutants completely deficient in adenosylmethionine decarboxylase and in spermidine biosynthesis. J Biol Chem. 1978 May 25;253(10):3671–3676. [PubMed] [Google Scholar]
- Tabor H., Tabor C. W., Cohn M. S., Hafner E. W. Streptomycin resistance (rpsL) produces an absolute requirement for polyamines for growth of an Escherichia coli strain unable to synthesize putrescine and spermidine [delta(speA-speB) delta specC]. J Bacteriol. 1981 Aug;147(2):702–704. doi: 10.1128/jb.147.2.702-704.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabor H., Tabor C. W. Polyamine requirement for efficient translation of amber codons in vivo. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7087–7091. doi: 10.1073/pnas.79.23.7087. [DOI] [PMC free article] [PubMed] [Google Scholar]
