Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Nov 1;223(3):831–835. doi: 10.1042/bj2230831

Branched-chain amino acid metabolism and alanine formation in rat diaphragm muscle in vitro. Effects of dichloroacetate.

K Snell, D A Duff
PMCID: PMC1144369  PMID: 6508745

Abstract

Dichloroacetate (which activates pyruvate dehydrogenase) decreases the release of alanine, pyruvate and lactate in hemidiaphragm incubations with valine. Dichloroacetate interferes with alanine formation by diverting pyruvate into oxidative pathways, which not only limits pyruvate availability for direct transamination to form alanine but also indirectly affects branched-chain amino acid transamination by limiting 2-oxoglutarate regeneration from glutamate.

Full text

PDF
831

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackshear P. J., Holloway P. A., Alberti K. G. Factors regulating amino acid release from extrasplanchnic tissues in the rat. Interactions of alanine and glutamine. Biochem J. 1975 Sep;150(3):379–387. doi: 10.1042/bj1500379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cappuccino C. C., Kadowaki H., Knox W. E. Assay of leucine aminotransferase in rat tissues and tumors. Enzyme. 1978;23(5):328–338. doi: 10.1159/000458597. [DOI] [PubMed] [Google Scholar]
  3. Caterson I. D., Fuller S. J., Randle P. J. Effect of the fatty acid oxidation inhibitor 2-tetradecylglycidic acid on pyruvate dehydrogenase complex activity in starved and alloxan-diabetic rats. Biochem J. 1982 Oct 15;208(1):53–60. doi: 10.1042/bj2080053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crabb D. W., Yount E. A., Harris R. A. The metabolic effects of dichloroacetate. Metabolism. 1981 Oct;30(10):1024–1039. doi: 10.1016/0026-0495(81)90105-0. [DOI] [PubMed] [Google Scholar]
  5. Goldberg A. L., Odessey R. Oxidation of amino acids by diaphragms from fed and fasted rats. Am J Physiol. 1972 Dec;223(6):1384–1391. doi: 10.1152/ajplegacy.1972.223.6.1384. [DOI] [PubMed] [Google Scholar]
  6. Goldstein L., Newsholme E. A. The formation of alanine from amino acids in diaphragm muscle of the rat. Biochem J. 1976 Feb 15;154(2):555–558. doi: 10.1042/bj1540555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goodman M. N., Ruderman N. B., Aoki T. T. Glucose and amino acid metabolism in perfused skeletal muscle. Effect of dichloroacetate. Diabetes. 1978 Nov;27(11):1065–1074. doi: 10.2337/diab.27.11.1065. [DOI] [PubMed] [Google Scholar]
  8. Harris R. A., Crabb D. W., Sans R. M. Studies on the regulation of leucine catabolism. II. Mechanism responsible for dichloroacetate stimulation of leucine oxidation by the liver. Arch Biochem Biophys. 1978 Sep;190(1):8–16. doi: 10.1016/0003-9861(78)90248-5. [DOI] [PubMed] [Google Scholar]
  9. Hennig G., Löffler G., Wieland O. H. Active and inactive forms of pyruvatedehydrogenase in skeletal muscle as related to the metabolic and functional state of the muscle cell. FEBS Lett. 1975 Nov 15;59(2):142–145. doi: 10.1016/0014-5793(75)80361-9. [DOI] [PubMed] [Google Scholar]
  10. McAllister A., Allison S. P., Randle P. J. Effects of dichloroacetate on the metabolism of glucose, pyruvate, acetate, 3-hydroxybutyrate and palmitate in rat diaphragm and heart muscle in vitro and on extraction of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo. Biochem J. 1973 Aug;134(4):1067–1081. doi: 10.1042/bj1341067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Newsholme E. A., Williams T. The role of phosphoenolpyruvate carboxykinase in amino acid metabolism in muscle. Biochem J. 1978 Nov 15;176(2):623–626. doi: 10.1042/bj1760623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Palmer T. N., Caldecourt M. A., Slavin J. P. Pyruvate kinase and alanine synthesis in skeletal muscle. Biosci Rep. 1982 Nov;2(11):941–948. doi: 10.1007/BF01114901. [DOI] [PubMed] [Google Scholar]
  13. Pardridge W. M., Duducgian-Vartavarian L., Casanello-Ertl D. Effects of dichloroacetate on the lactate/pyruvate ratio and on aspartate and leucine metabolism in cultured rat skeletal muscle cells. Biochem Pharmacol. 1983 Jan 1;32(1):97–100. doi: 10.1016/0006-2952(83)90659-7. [DOI] [PubMed] [Google Scholar]
  14. Sans R. M., Jolly W. W., Harris R. A. Studies on the regulation of leucine catabolism. Mechanism responsible for oxidizable substrate inhibition and dichloroacetate stimulation of leucine oxidation by the heart. Arch Biochem Biophys. 1980 Apr 1;200(2):336–345. doi: 10.1016/0003-9861(80)90363-x. [DOI] [PubMed] [Google Scholar]
  15. Snell K., Duff D. A. Muscle phosphoenolpyruvate carboxykinase activity and alanine release in progressively starved rats. Int J Biochem. 1979;10(5):423–426. doi: 10.1016/0020-711x(79)90066-1. [DOI] [PubMed] [Google Scholar]
  16. Snell K., Duff D. A. The release of alanine by rat diaphragm muscle in vitro. Biochem J. 1977 Feb 15;162(2):399–403. doi: 10.1042/bj1620399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Snell K. Muscle alanine synthesis and hepatic gluconeogenesis. Biochem Soc Trans. 1980 Apr;8(2):205–213. doi: 10.1042/bst0080205. [DOI] [PubMed] [Google Scholar]
  18. Whitehouse S., Cooper R. H., Randle P. J. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J. 1974 Sep;141(3):761–774. doi: 10.1042/bj1410761. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES