Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Nov 15;224(1):109–116. doi: 10.1042/bj2240109

Metabolism of valine and 3-methyl-2-oxobutanoate by the isolated perfused rat kidney.

R H Miller, A E Harper
PMCID: PMC1144403  PMID: 6508752

Abstract

Metabolism of branched-chain amino and 2-oxo acids was studied in the isolated perfused kidney. Significant amounts of 2-oxo acids were released by perfused kidney with all concentrations of amino acids tested (0.1-1.0 mM each), despite the high activity of branched-chain 2-oxo acid dehydrogenase in kidney. As perfusate valine concentration was increased from 0.2 to 1.0 mM, [1-14C]valine transamination (2-oxo acid oxidized + released) increased roughly linearly; [1-14C]valine oxidation, however, increased exponentially. Increasing perfusate concentration of 3-methyl-2-oxo[1-14C]butanoate from 0 to 1.0 mM resulted in a linear increase in the rate of its oxidation and a rise in perfusate valine concentration; at the same time significant decreases occurred in perfusate isoleucine and leucine concentrations, with corresponding increases in rates of release of their respective 2-oxo acids. Comparison of rates of oxidation of [1-14C]valine and 3-methyl-2-oxo[1-14C]butanoate suggests that 2-oxo acid arising from [1-14C]valine transamination has freer access to the 2-oxo acid dehydrogenase than has the 2-oxo acid from the perfusate. The observations indicate that, when branched-chain amino and 2-oxo acids are present in perfusate at near-physiological concentrations, rates of transamination of the amino and 2-oxo acids by isolated perfused kidney are greater than rates of oxidation.

Full text

PDF
109

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brand K. Metabolism of 2-oxoacid analogues of leucine, valine and phenylalanine by heart muscle, brain and kidney of the rat. Biochim Biophys Acta. 1981 Sep 18;677(1):126–132. doi: 10.1016/0304-4165(81)90153-7. [DOI] [PubMed] [Google Scholar]
  2. Chawla R. K., Rudman D. Utilization of alpha-keto and alpha-hydroxy analogues of valine by the growing rat. J Clin Invest. 1974 Aug;54(2):271–277. doi: 10.1172/JCI107762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cree T. C., Hutson S. M., Harper A. E. Gas-liquid chromatography of alpha-keto acids: quantification of the branched-chain-alpha-keto acids from physiological sources. Anal Biochem. 1979 Jan 1;92(1):159–163. doi: 10.1016/0003-2697(79)90638-9. [DOI] [PubMed] [Google Scholar]
  4. Dawson A. G., Hird F. J., Morton D. J. Oxidation of leucine by rat liver and kidney. Arch Biochem Biophys. 1967 Nov;122(2):426–433. doi: 10.1016/0003-9861(67)90216-0. [DOI] [PubMed] [Google Scholar]
  5. Dawson A. G., Hird F. J. Oxidation of L-valine by rat kidney preparations. Arch Biochem Biophys. 1968 Sep 20;127(1):622–626. doi: 10.1016/0003-9861(68)90270-1. [DOI] [PubMed] [Google Scholar]
  6. Dixon J. L., Harper A. E. Effects on plasma amino acid concentrations and hepatic branched-chain alpha-keto acid dehydrogenase activity of feeding rats diets containing 9 or 50% casein. J Nutr. 1984 Jun;114(6):1025–1034. doi: 10.1093/jn/114.6.1025. [DOI] [PubMed] [Google Scholar]
  7. Epstein F. H., Brosnan J. T., Tange J. D., Ross B. D. Improved function with amino acids in the isolated perfused kidney. Am J Physiol. 1982 Sep;243(3):F284–F292. doi: 10.1152/ajprenal.1982.243.3.F284. [DOI] [PubMed] [Google Scholar]
  8. Eriksson L. S., Hagenfeldt L., Wahren J. Intravenous infusion of alpha-oxoisocaproate: influence on amino acid and nitrogen metabolism in patients with liver cirrhosis. Clin Sci (Lond) 1982 Mar;62(3):285–293. doi: 10.1042/cs0620285. [DOI] [PubMed] [Google Scholar]
  9. Galim E. B., Hruska K., Bier D. M., Matthews D. E., Haymond M. W. Branched-chain amino acid nitrogen transfer to alamine in vivo in dogs. Direct isotopic determination with [15N]leucine. J Clin Invest. 1980 Dec;66(6):1295–1304. doi: 10.1172/JCI109981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gillim S. E., Paxton R., Cook G. A., Harris R. A. Activity state of the branched chain alpha-ketoacid dehydrogenase complex in heart, liver, and kidney of normal, fasted, diabetic, and protein-starved rats. Biochem Biophys Res Commun. 1983 Feb 28;111(1):74–81. doi: 10.1016/s0006-291x(83)80119-3. [DOI] [PubMed] [Google Scholar]
  11. Harper A. E. Methods for assessing amino acid requirements and the effectiveness of alpha-keto acid analogs as substitutes for amino acids. Am J Clin Nutr. 1978 Sep;31(9):1678–1687. doi: 10.1093/ajcn/31.9.1678. [DOI] [PubMed] [Google Scholar]
  12. Harper A. E., Miller R. H., Block K. P. Branched-chain amino acid metabolism. Annu Rev Nutr. 1984;4:409–454. doi: 10.1146/annurev.nu.04.070184.002205. [DOI] [PubMed] [Google Scholar]
  13. Hughes W. A., Halestrap A. P. The regulation of branched-chain 2-oxo acid dehydrogenase of liver, kidney and heart by phosphorylation. Biochem J. 1981 May 15;196(2):459–469. doi: 10.1042/bj1960459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hutson S. M., Cree T. C., Harper A. E. Regulation of leucine and alpha-ketoisocaproate metabolism in skeletal muscle. J Biol Chem. 1978 Nov 25;253(22):8126–8133. [PubMed] [Google Scholar]
  15. Hutson S. M., Harper A. E. Blood and tissue branched-chain amino and alpha-keto acid concentrations: effect of diet, starvation, and disease. Am J Clin Nutr. 1981 Feb;34(2):173–183. doi: 10.1093/ajcn/34.2.173. [DOI] [PubMed] [Google Scholar]
  16. Hutson S. M., Zapalowski C., Cree T. C., Harper A. E. Regulation of leucine and alpha-ketoisocaproic acid metabolism in skeletal muscle. Effects of starvation and insulin. J Biol Chem. 1980 Mar 25;255(6):2418–2426. [PubMed] [Google Scholar]
  17. Ichihara A., Noda C., Goto M. Transaminase of brainched chain amino acids. X. High activity in stomach and pancreas. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1313–1318. doi: 10.1016/0006-291x(75)90170-9. [DOI] [PubMed] [Google Scholar]
  18. Ichihara A., Noda C., Ogawa K. Control of leucine metabolism with special reference to branched-chain amino acid transaminase isozymes. Adv Enzyme Regul. 1973;11:155–166. doi: 10.1016/0065-2571(73)90014-9. [DOI] [PubMed] [Google Scholar]
  19. Kadowaki H., Knox W. E. Cytosolic and mitochondrial isoenzymes of branched-chain amino acid aminotransferase during development of the rat. Biochem J. 1982 Mar 15;202(3):777–783. doi: 10.1042/bj2020777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Krebs H. A., Lund P. Aspects of the regulation of the metabolism of branched-chain amino acids. Adv Enzyme Regul. 1976;15:375–394. doi: 10.1016/0065-2571(77)90026-7. [DOI] [PubMed] [Google Scholar]
  21. Lau K. S., Fatania H. R., Randle P. J. Inactivation of rat liver and kidney branched chain 2-oxoacid dehydrogenase complex by adenosine triphosphate. FEBS Lett. 1981 Apr 6;126(1):66–70. doi: 10.1016/0014-5793(81)81034-4. [DOI] [PubMed] [Google Scholar]
  22. Livesey G., Lund P. Binding of branched-chain 2-oxo acids to bovine serum albumin. Biochem J. 1982 Apr 15;204(1):265–272. doi: 10.1042/bj2040265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Livesey G., Lund P. Enzymic determination of branched-chain amino acids and 2-oxoacids in rat tissues. Transfer of 2-oxoacids from skeletal muscle to liver in vivo. Biochem J. 1980 Jun 15;188(3):705–713. doi: 10.1042/bj1880705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maack T. Physiological evaluation of the isolated perfused rat kidney. Am J Physiol. 1980 Feb;238(2):F71–F78. doi: 10.1152/ajprenal.1980.238.2.F71. [DOI] [PubMed] [Google Scholar]
  25. Matthews D. E., Bier D. M., Rennie M. J., Edwards R. H., Halliday D., Millward D. J., Clugston G. A. Regulation of leucine metabolism in man: a stable isotope study. Science. 1981 Dec 4;214(4525):1129–1131. doi: 10.1126/science.7302583. [DOI] [PubMed] [Google Scholar]
  26. Mitch W. E., Chan W. Transamination of branched-chain keto acids by isolated perfused rat kidney. Am J Physiol. 1978 Jul;235(1):E47–E52. doi: 10.1152/ajpendo.1978.235.1.E47. [DOI] [PubMed] [Google Scholar]
  27. Nishiitsutsuji-Uwo J. M., Ross B. D., Krebs H. A. Metabolic activities of the isolated perfused rat kidney. Biochem J. 1967 Jun;103(3):852–862. doi: 10.1042/bj1030852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nissen S. L., Miles J. M., Gerich J. E., Haymond M. W. Regulation of alpha-ketoisocaproate binding to albumin in vivo by free fatty acids. Am J Physiol. 1982 Jan;242(1):E67–E71. doi: 10.1152/ajpendo.1982.242.1.E67. [DOI] [PubMed] [Google Scholar]
  29. Nissen S., Haymond M. W. Effects of fasting on flux and interconversion of leucine and alpha-ketoisocaproate in vivo. Am J Physiol. 1981 Jul;241(1):E72–E75. doi: 10.1152/ajpendo.1981.241.1.E72. [DOI] [PubMed] [Google Scholar]
  30. Odessey R., Goldberg A. L. Oxidation of leucine by rat skeletal muscle. Am J Physiol. 1972 Dec;223(6):1376–1383. doi: 10.1152/ajplegacy.1972.223.6.1376. [DOI] [PubMed] [Google Scholar]
  31. Odessey R. Reversible ATP-induced inactivation of branched-chain 2-oxo acid dehydrogenase. Biochem J. 1980 Oct 15;192(1):155–163. doi: 10.1042/bj1920155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pozefsky T., Walser M. Effect of intraarterial infusion of the ketoanalogue of leucine on amino acid release by forearm muscle. Metabolism. 1977 Jul;26(7):807–815. doi: 10.1016/0026-0495(77)90069-5. [DOI] [PubMed] [Google Scholar]
  33. Rüdiger H. W., Langenbeck U., Goedde H. W. A simplified method for the preparation of 14 C-labelled branched-chain -oxo acids. Biochem J. 1972 Jan;126(2):445–446. doi: 10.1042/bj1260445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shinnick F. L., Harper A. E. Branched-chain amino acid oxidation by isolated rat tissue preparations. Biochim Biophys Acta. 1976 Jul 21;437(2):477–486. doi: 10.1016/0304-4165(76)90016-7. [DOI] [PubMed] [Google Scholar]
  35. Taylor R. T., Jenkins W. T. Leucine aminotransferase. II. Purification and characterization. J Biol Chem. 1966 Oct 10;241(19):4396–4405. [PubMed] [Google Scholar]
  36. Wagenmakers A. J., Schepens J. T., Veldhuizen J. A., Veerkamp J. H. The activity state of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues. Biochem J. 1984 May 15;220(1):273–281. doi: 10.1042/bj2200273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wohlhueter R. M., Harper A. E. Coinduction of rat liver branched chain alpha-keto acid dehydrogenase activities. J Biol Chem. 1970 May 10;245(9):2391–2401. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES