Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Nov 15;224(1):145–151. doi: 10.1042/bj2240145

Loss of protection by nucleotides against proteolysis and thiol modification in the isolated alpha-subunit from F1 ATPase of Escherichia coli mutant uncA401.

H Stan-Lotter, P D Bragg
PMCID: PMC1144407  PMID: 6239616

Abstract

Binding of nucleotides to the high-affinity site of the isolated alpha subunit of normal Escherichia coli F1 adenosine triphosphatase (ATPase) results in partial protection against digestion by trypsin [Senda, Kanazawa, Tsuchiya & Futai (1983) Arch. Biochem. Biophys. 220, 398-440]. In contrast, the isolated alpha subunit from the defective ATPase of the E. coli uncA401 mutant (strain AN120) is cleaved by trypsin to peptides of less than 8000 Da in the presence of ADP or ATP (2.5 microM-110 mM). The nucleotide-dependent accessibility of thiol groups of the isolated alpha subunit was also studied. Two out of four thiol groups of the alpha subunit from normal ATPase are labelled by fluorescent maleimides or iodoacetates, but in the presence of ADP or ATP (0.14-1.2 mM), reaction of thiol groups with these labels is almost absent. Mutant alpha subunit, however, is labelled by these reagents at all four thiol groups in the presence or absence of ADP or ATP (1 mM). These results suggest that the mutation in the ATPase of strain AN120 leads either to the loss of the high-affinity nucleotide-binding site or affects transmission of allosteric changes that occur on binding of nucleotide to the isolated alpha subunit.

Full text

PDF
145

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Bragg P. D., Hou C. A cross-linking study of the Ca2+, Mg2+-activated adenosine triphosphatase of Escherichia coli. Eur J Biochem. 1980 May;106(2):495–503. doi: 10.1111/j.1432-1033.1980.tb04596.x. [DOI] [PubMed] [Google Scholar]
  3. Bragg P. D., Hou C. A difference in the affinity labeling of Ca2+, Mg2+-activated ATPases of normal and unc A strains of Escherichia coli by the 2',3'-dialdehyde derivative of adenosine 5'-diphosphate. Biochem Biophys Res Commun. 1980 Aug 14;95(3):952–957. doi: 10.1016/0006-291x(80)91565-x. [DOI] [PubMed] [Google Scholar]
  4. Bragg P. D., Hou C. Purification and characterization of the inactive Ca2+, Mg2+-activated adenosine triphosphatase of the unc A- mutant Escherichia coli AN120. Arch Biochem Biophys. 1977 Jan 30;178(2):486–494. doi: 10.1016/0003-9861(77)90219-3. [DOI] [PubMed] [Google Scholar]
  5. Bragg P. D., Stan-Lotter H., Hou C. Adenine nucleotide binding sites in normal and mutant adenosine triphosphatases of Escherichia coli. Arch Biochem Biophys. 1982 Feb;213(2):669–679. doi: 10.1016/0003-9861(82)90597-5. [DOI] [PubMed] [Google Scholar]
  6. Bragg P. D., Stan-Lotter H., Hou C. Affinity labeling of purified Ca2+,Mg2+-activated ATPase of Escherichia coli by the 2',3'-dialdehydes of adenosine 5'-di- and triphosphates. Arch Biochem Biophys. 1981 Apr 1;207(2):290–299. doi: 10.1016/0003-9861(81)90036-9. [DOI] [PubMed] [Google Scholar]
  7. Creighton T. E. Counting integral numbers of amino acid residues per polypeptide chain. Nature. 1980 Apr 3;284(5755):487–489. doi: 10.1038/284487a0. [DOI] [PubMed] [Google Scholar]
  8. Dunn S. D. ATP causes a large change in the conformation of the isolated alpha subunit of Escherichia coli F1 ATPase. J Biol Chem. 1980 Dec 25;255(24):11857–11860. [PubMed] [Google Scholar]
  9. Dunn S. D., Futai M. Reconstitution of a functional coupling factor from the isolated subunits of Escherichia coli F1 ATPase. J Biol Chem. 1980 Jan 10;255(1):113–118. [PubMed] [Google Scholar]
  10. Dunn S. D., Heppel L. A. Properties and functions of the subunits of the Escherichia coli coupling factor ATPase. Arch Biochem Biophys. 1981 Sep;210(2):421–436. doi: 10.1016/0003-9861(81)90206-x. [DOI] [PubMed] [Google Scholar]
  11. Dunn S. D. Identification of the altered subunit in the inactive F1ATPase of an Escherichia coli uncA mutant. Biochem Biophys Res Commun. 1978 May 30;82(2):596–602. doi: 10.1016/0006-291x(78)90916-6. [DOI] [PubMed] [Google Scholar]
  12. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  13. Futai M., Kanazawa H. Structure and function of proton-translocating adenosine triphosphatase (F0F1): biochemical and molecular biological approaches. Microbiol Rev. 1983 Sep;47(3):285–312. doi: 10.1128/mr.47.3.285-312.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gay N. J., Walker J. E. The atp operon: nucleotide sequence of the region encoding the alpha-subunit of Escherichia coli ATP-synthase. Nucleic Acids Res. 1981 May 11;9(9):2187–2194. doi: 10.1093/nar/9.9.2187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kanazawa H., Kayano T., Mabuchi K., Futai M. Nucleotide sequence of the genes coding for alpha, beta and gamma subunits of the proton-translocating ATPase of Escherichia coli. Biochem Biophys Res Commun. 1981 Nov 30;103(2):604–612. doi: 10.1016/0006-291x(81)90494-0. [DOI] [PubMed] [Google Scholar]
  16. Kanazawa H., Noumi T., Matsuoka I., Hirata T., Futai M. F1ATPase of Escherichia coli: a mutation (uncA401) located in the middle of the alpha subunit affects the conformation essential for F1 activity. Arch Biochem Biophys. 1984 Jan;228(1):258–269. doi: 10.1016/0003-9861(84)90066-3. [DOI] [PubMed] [Google Scholar]
  17. Kanazawa H., Saito S., Futai M. Coupling factor ATPase from Escherichia coli. An uncA mutant (uncA401) with defective alpha subunit. J Biochem. 1978 Dec;84(6):1513–1517. doi: 10.1093/oxfordjournals.jbchem.a132276. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lunardi J., Satre M., Vignais P. V. Exploration of adenosine 5'-diphosphate-adenosine 5'-triphosphate binding sites of Escherichia coli adenosine 5'-triphosphatase with arylazido adenine nucleotides. Biochemistry. 1981 Feb 3;20(3):473–480. doi: 10.1021/bi00506a005. [DOI] [PubMed] [Google Scholar]
  20. Maeda M., Futai M., Anraku Y. Biochemical characterization of the uncA phenotype of Escherichia coli. Biochem Biophys Res Commun. 1976 May 23;76(2):331–338. doi: 10.1016/0006-291x(77)90729-x. [DOI] [PubMed] [Google Scholar]
  21. Merril C. R., Goldman D., Van Keuren M. L. Silver staining methods for polyacrylamide gel electrophoresis. Methods Enzymol. 1983;96:230–239. doi: 10.1016/s0076-6879(83)96021-4. [DOI] [PubMed] [Google Scholar]
  22. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  23. Ohta S., Tsubo M., Oshima T., Yoshida M., Kagawa Y. Nucleotide binding to isolated alpha and beta subunits of proton translocating adenosine triphosphatase studied with circular dichroism. J Biochem. 1980 Jun;87(6):1609–1617. doi: 10.1093/oxfordjournals.jbchem.a132904. [DOI] [PubMed] [Google Scholar]
  24. Paradies H. H. Effect of ATP on the translational diffusion coefficient of the alpha-subunit of Escherichia coli F1-ATPase. FEBS Lett. 1980 Nov 3;120(2):289–292. doi: 10.1016/0014-5793(80)80319-x. [DOI] [PubMed] [Google Scholar]
  25. Paradies H. H. Size and shape of the alpha subunit of the (Ca,Mg)-dependent adenosinetriphosphate from Escherichia coli in solution in the presence and absence of ATP. Eur J Biochem. 1981 Aug;118(1):187–194. doi: 10.1111/j.1432-1033.1981.tb05504.x. [DOI] [PubMed] [Google Scholar]
  26. Penefsky H. S. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1977 May 10;252(9):2891–2899. [PubMed] [Google Scholar]
  27. Senda M., Kanazawa H., Tsuchiya T., Futai M. Conformational change of the alpha subunit of Escherichia coli F1 ATPase: ATP changes the trypsin sensitivity of the subunit. Arch Biochem Biophys. 1983 Feb 1;220(2):398–404. doi: 10.1016/0003-9861(83)90429-0. [DOI] [PubMed] [Google Scholar]
  28. Senior A. E., Downie J. A., Cox G. B., Gibson F., Langman L., Fayle D. R. The uncA gene codes for the alpha-subunit of the adenosine triphosphatase of Escherichia coli. Electrophoretic analysis of uncA mutant strains. Biochem J. 1979 Apr 15;180(1):103–109. doi: 10.1042/bj1800103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Senior A. E., Wise J. G. The proton-ATPase of bacteria and mitochondria. J Membr Biol. 1983;73(2):105–124. doi: 10.1007/BF01870434. [DOI] [PubMed] [Google Scholar]
  30. Stan-Lotter H., Bragg P. D. Sulfhydryl groups of the F1 adenosine triphosphatase of Escherichia coli and the stoichiometry of the subunits. Arch Biochem Biophys. 1984 Feb 15;229(1):320–328. doi: 10.1016/0003-9861(84)90158-9. [DOI] [PubMed] [Google Scholar]
  31. Verheijen J. H., Postma P. W., Van Dam K. The uncA401 mutation alters a nucleotide-binding site in the alpha-subunit of the F1 adenosine triphosphatase from Escherichia coli. FEBS Lett. 1980 Jul 28;116(2):307–309. doi: 10.1016/0014-5793(80)80669-7. [DOI] [PubMed] [Google Scholar]
  32. Walker J. E., Eberle A., Gay N. J., Runswick M. J., Saraste M. Conservation of structure in proton-translocating ATPases of Escherichia coli and mitochondria. Biochem Soc Trans. 1982 Aug;10(4):203–206. doi: 10.1042/bst0100203. [DOI] [PubMed] [Google Scholar]
  33. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wise J. G., Latchney L. R., Ferguson A. M., Senior A. E. Defective proton ATPase of uncA mutants of Escherichia coli. 5'-Adenylyl imidodiphosphate binding and ATP hydrolysis. Biochemistry. 1984 Mar 27;23(7):1426–1432. doi: 10.1021/bi00302a014. [DOI] [PubMed] [Google Scholar]
  35. Wise J. G., Latchney L. R., Senior A. E. The defective proton-ATPase of uncA mutants of Escherichia coli. Studies of nucleotide binding sites, bound aurovertin fluorescence, and labeling of essential residues of the purified F1-ATPase. J Biol Chem. 1981 Oct 25;256(20):10383–10389. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES